当前位置: 首页 > news >正文

网站服务器的选择网络营销推广难做吗

网站服务器的选择,网络营销推广难做吗,网站公司怎么做推广方案,大学生创业 2月亏3万目录 1 用 numpy 快速求数组的各种统计量:mean, var, std 1.1 数据准备 1.2 直接用np的公式求解 1.3 注意问题 1.4 用print() 输出内容,显示效果 2 为了验证公式的后背,下面是详细的展开公式的求法 2.1 均值mean的详细 2.2 方差var的…

目录

1 用 numpy 快速求数组的各种统计量:mean, var, std

1.1 数据准备

1.2 直接用np的公式求解

1.3 注意问题

1.4 用print() 输出内容,显示效果

2 为了验证公式的后背,下面是详细的展开公式的求法

2.1 均值mean的详细

2.2 方差var的详细

2.2.1 一个比较奇怪的问题

2.2 (数组-均值)→离差数组→离差平方数组→离差平方和数

2.3 方差 var

2.4 标准差std

3  各种类型的数据平均数: min, max ,mean ,median, mode() 的求法

3.1 min, max ,mean ,median

3.2 众数mode()需要间接求

4 四分位数

4.1 什么是四分位数

4.2 如何求?

5 今天的所有测试代码 和对应测试结果

5.1 测试代码

5.2 测试结果 


1 用 numpy 快速求数组的各种统计量:mean, var, std

1.1 数据准备

  • 先生成一个纯数字列表,list1=[1,2,3,4,5,6,7,8,9,10]
  • 转化为np的数组,array1=np.array(list1)

1.2 直接用np的公式求解

  • mu1=np.mean(array1)
  • var1=np.var(array1)            #默认缺省 ddof=0,方差有偏估计
  • var11=np.var(array1,ddof=1)    #ddof 无偏估计
  • std1=np.std(array1)
  • std11=np.std(array1,ddof=1)

1.3 注意问题

#  以前可以用 scipy.mean() 等方法求,现在要被取消了,所以会报错

#报错 scipy.mean is deprecated and will be removed in SciPy 2.0.0
#mu1=sp.mean(array1)   
#var1=sp.var(array1)
#std1=sp.std(array1)

import scipy as sp
import numpy as np
import pandas as pdlist1=[1,2,3,4,5,6,7,8,9,10]
array1=np.array(list1)#现在只能用numpy求这些
mu1=np.mean(array1)
var1=np.var(array1)            #默认缺省 ddof=0,方差有偏估计
var11=np.var(array1,ddof=1)    #ddof 无偏估计
std1=np.std(array1)
std11=np.std(array1,ddof=1)

1.4 用print() 输出内容,显示效果

  • 不适合的
  • print("mu1%d=" %555)  #%d %s 只适合数字,字符串,不适合变量,变量当参数会报错
  • 比较老旧的用法
  • print("var1={0}".format(var1))   #适合变量带入,不灵活,不能用参数名需要标数字对应
  • print("var11={0}".format(var11)) 
  • 好用但是比较山寨的
  • print("mu1=" ,mu1)    #比较山寨,但是可以
  • 最好用的
  • print(f"std1={std1}")   #适合变量带入,带入的是参数名,灵活
  • print(f"std11={std11}") 
     

2 为了验证公式的背后的理解,下面是详细的展开公式的求法

2.1 均值mean的详细

  • 求sum,使用np.sum
  • 求数组长度  len()
  • 求均值  mu=np.sum/len()

2.2 方差var的详细

2.2.1 一个比较奇怪的问题

#无法一步数组-数字,然后求和???
#报错  SyntaxError: invalid decimal literal
#ss=np.sum((array1-mu2)**2)
#ss=sum((array1-mu2)**2)

2.2 (数组-均值)→离差数组→离差平方数组→离差平方和数

  • (数组-均值)→离差数组→离差平方数组→离差平方和数

  • #必须得拆开求SS?
  • xx=array1-mu2       # 离差数组(数组)    
  • yy=xx**2                 # 离差平方数组(数组)
  • ss=sum(yy)            # SS就是离差平方和(数字!)
  • print("离差数组xx=",xx)
  • print("离差平方数组yy=",yy)
  • print("离差平方和ss=",ss)

2.3 方差 var

  • 我们只能得到样本方差,但是我们可以估计出总体方差
  • 样本方差=有偏(总体)方差var=ss/n
  • 无偏(总体)方差var=ss/(n-1)

2.4 标准差std

  • 样本标准差
  • 样本无偏标准差
  • 总体无偏标准差

import scipy as sp
import numpy as np
import pandas as pdlist1=[1,2,3,4,5,6,7,8,9,10]
array1=np.array(list1)# 下面是展开的求法,求数组的各种统计量------------验证上面内容
sum2=np.sum(array1)
#n=np.len(array1) 
n=len(array1)    #len()是python的基础方法
mu2=sum2/n#无法一步数组-数字,然后求和???
#报错  SyntaxError: invalid decimal literal
#ss=np.sum((array1-mu2)**2)
#ss=sum((array1-mu2)**2)
#必须得拆开求SS?
xx=array1-mu2       # 离差数组(数组)    
yy=xx**2            # 离差平方数组(数组)
ss=sum(yy)          # SS就是离差平方和(数字!)
print("离差数组xx=",xx)
print("离差平方数组yy=",yy)
print("离差平方和ss=",ss)var2=ss/n
var22=ss/(n-1)std2=np.sqrt(var2)
std22=np.sqrt(var22)#结果和上面是相同的
print("mu2=" ,mu2)   
print("var2={0}".format(var2))   
print("var22={0}".format(var22))   
print(f"std2={std2}")   
print(f"std22={std22}") 

3  各种类型的数据平均数: min, max ,mean ,median, mode() 的求法

3.1 min, max ,mean ,median

#其他统计内容

  • print(np.min(array1))
  • print(np.max(array1))
  • print(np.mean(array1))
  • print(np.median(array1))
#其他统计内容
print(np.min(array1))
print(np.max(array1))
print(np.mean(array1))
print(np.median(array1))countList = np.bincount(np.array(array1))
mode = np.argmax(countList)
print(mode)

3.2 众数mode()需要间接求

numpy无法直接求众数,这个方法是网上查的

  • 主要思路就是求每个数的出现次数,然后去查对应出现次数最多的元素就是众数。
  • countList = np.bincount(np.array(array1))
  • #np.bincount用于统计输入数组中每个数值出现的次数
  • #np.argmax是用于取得数组中每一行或者每一列的的最大值
  • mode = np.argmax(countList)
  • print(mode)

4 四分位数

4.1 什么是四分位数

  • 其实四分位数,就是 0%,25% ,50%,75%,100% 这5个点组成的四个均等1/4长线段
  • 本身0%,100% 就是min 和 max
  • 新加25% ,50%,75% 即可区分4个1/4四分位的线段

4.2 如何求?

  • sp.stats.scoreatpercentile(array1,25)  即25%,即1/4分位的数
print("#四分位数")
#四分位数
print(sp.stats.scoreatpercentile(array1,0))
print(sp.stats.scoreatpercentile(array1,25))
print(sp.stats.scoreatpercentile(array1,50))
print(sp.stats.scoreatpercentile(array1,75))
print(sp.stats.scoreatpercentile(array1,100))

5 今天的所有测试代码 和对应测试结果

5.1 测试代码

import scipy as sp
import numpy as np
import pandas as pdlist1=[1,2,3,4,5,6,7,8,9,10]
array1=np.array(list1)print("#日常用法----用numpy 快速求数组的各种统计量")
# 用numpy 快速求数组的各种统计量----------日常用法
#报错 scipy.mean is deprecated and will be removed in SciPy 2.0.0
#mu1=sp.mean(array1)   
#var1=sp.var(array1)
#std1=sp.std(array1)#现在只能用numpy求这些
mu1=np.mean(array1)
var1=np.var(array1)            #默认缺省 ddof=0,方差有偏估计
var11=np.var(array1,ddof=1)    #ddof 无偏估计
std1=np.std(array1)
std11=np.std(array1,ddof=1)print("mu1%d=" %555)  #%d %s 只适合数字,字符串,不适合变量,变量当参数会报错
print("mu1=" ,mu1)    #比较山寨,但是可以
print("var1={0}".format(var1))   #适合变量带入,不灵活,不能用参数名需要标数字对应
print("var11={0}".format(var11)) 
print(f"std1={std1}")   #适合变量带入,带入的是参数名,灵活
print(f"std11={std11}") print()
print("# 下面是详细的展开公式的求法,求数组的各种统计量----------验证上面内容")
# 下面是展开的求法,求数组的各种统计量------------验证上面内容
sum2=np.sum(array1)
#n=np.len(array1) 
n=len(array1)    #len()是python的基础方法
mu2=sum2/n#无法一步数组-数字,然后求和???
#报错  SyntaxError: invalid decimal literal
#ss=np.sum((array1-mu2)**2)
#ss=sum((array1-mu2)**2)
#必须得拆开求SS?
xx=array1-mu2       # 离差数组(数组)    
yy=xx**2            # 离差平方数组(数组)
ss=sum(yy)          # SS就是离差平方和(数字!)
print("离差数组xx=",xx)
print("离差平方数组yy=",yy)
print("离差平方和ss=",ss)var2=ss/n
var22=ss/(n-1)std2=np.sqrt(var2)
std22=np.sqrt(var22)#结果和上面是相同的
print("mu2=" ,mu2)   
print("var2={0}".format(var2))   
print("var22={0}".format(var22))   
print(f"std2={std2}")   
print(f"std22={std22}") print("")
print("#其他统计内容")
#其他统计内容
print(np.min(array1))
print(np.max(array1))
print(np.mean(array1))
print(np.median(array1))countList = np.bincount(np.array(array1))
mode = np.argmax(countList)
print(mode)print("")
print("#四分位数")
#四分位数
print(sp.stats.scoreatpercentile(array1,0))
print(sp.stats.scoreatpercentile(array1,25))
print(sp.stats.scoreatpercentile(array1,50))
print(sp.stats.scoreatpercentile(array1,75))
print(sp.stats.scoreatpercentile(array1,100))

5.2 测试结果 

http://www.yayakq.cn/news/88135/

相关文章:

  • 建设网站如何挣钱wordpress下载资源
  • 网站建设 豫icp备响应的网站
  • 作文网站哪个平台好上海短视频推广公司
  • 什么网站做弹窗广告好Wordpress竞拍
  • 相亲网站认识的可以做朋友企业网站建设的一般原则包括
  • jq网站模板免费做网站送域名的
  • 网站导航html制作网页网站的软件
  • 搭建博客网站千锋教育的it培训怎么样
  • 网站 备案规定怎么看公司网站做的好不好哦
  • 网站下载的app删除了怎么找到怎样把一个网站建设的更好
  • 网站自己做推广wordpress模板可以添加注册会员
  • 江西网站设计方案简单的旅游网站代码
  • discuz做影视网站推广软件app赚钱联盟
  • 河北省建设工程安全生产监督管理网站公司网站建设有用吗
  • 用易语言做攻击网站软件哈尔滨做平台网站平台公司哪家好
  • 项城网站建设深圳网警
  • 最优惠的赣州网站建设上海网站营销公司
  • 为企业做网站电子商务网站开发流程包括
  • 网站群建设项目招标公告商企通三合一网站建设
  • 工厂型企业做网站河北省建设银行网站
  • 中铁建设门户网站平面设计教学视频
  • 电影网站怎么做seo做电影网站有什么流媒体好
  • 个人网站开发视频微信怎样开公众号
  • 网站备案与icp备案WordPress Grace8.2主题
  • 用wordpress建站案例网站开发团队需配备什么岗位
  • 嘉兴的信息公司网站苏州seo网站推广哪家好
  • 做鲜花的网站有哪些家政网站设计
  • 4.1网站建设的基本步骤网络热词大全
  • 常熟住房和城乡建设局网站首页简单的企业网页模板
  • 自学做网站要学什么深圳4a广告公司有哪些