当前位置: 首页 > news >正文

产品展示型网站赏析做电影资源网站服务器怎么选

产品展示型网站赏析,做电影资源网站服务器怎么选,做代理需要网站吗,1000M双线网站空间定义了一套与时间特征相关的类和函数,旨在从时间序列数据中提取有用的时间特征,以支持各种时间序列分析和预测任务 from typing import Listimport numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequenc…

定义了一套与时间特征相关的类和函数,旨在从时间序列数据中提取有用的时间特征,以支持各种时间序列分析和预测任务 

from typing import Listimport numpy as np
import pandas as pd
from pandas.tseries import offsets
from pandas.tseries.frequencies import to_offset

1 TimeFeature 类

  • 这是一个基础类,其他与时间特征相关的类都继承自它。
  • 它提供了一个基本框架,但没有实现具体的功能。
class TimeFeature:def __init__(self):passdef __call__(self, index: pd.DatetimeIndex) -> np.ndarray:passdef __repr__(self):return self.__class__.__name__ + "()"

 2 时间特征类

SecondOfMinuteMinuteOfHourHourOfDayDayOfWeekDayOfMonthDayOfYearMonthOfYearWeekOfYear:这些类都继承自TimeFeature,每个类都实现了一个特定的时间特征提取方法。例如,HourOfDay类提取一天中的小时数并进行规范化处理,使得值在[-0.5, 0.5]之间。

class SecondOfMinute(TimeFeature):"""Minute of hour encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return index.second / 59.0 - 0.5class MinuteOfHour(TimeFeature):"""Minute of hour encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return index.minute / 59.0 - 0.5class HourOfDay(TimeFeature):"""Hour of day encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return index.hour / 23.0 - 0.5class DayOfWeek(TimeFeature):"""Hour of day encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return index.dayofweek / 6.0 - 0.5class DayOfMonth(TimeFeature):"""Day of month encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return (index.day - 1) / 30.0 - 0.5class DayOfYear(TimeFeature):"""Day of year encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return (index.dayofyear - 1) / 365.0 - 0.5class MonthOfYear(TimeFeature):"""Month of year encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return (index.month - 1) / 11.0 - 0.5class WeekOfYear(TimeFeature):"""Week of year encoded as value between [-0.5, 0.5]"""def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:return (index.week - 1) / 52.0 - 0.5

3 time_features_from_frwquency_str

def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]:"""根据给定的频率字符串(如"12H", "5min", "1D"等)返回一组适当的时间特征类实例"""features_by_offsets = {offsets.YearEnd: [],offsets.QuarterEnd: [MonthOfYear],offsets.MonthEnd: [MonthOfYear],offsets.Week: [DayOfMonth, WeekOfYear],offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear],offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear],offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear],offsets.Minute: [MinuteOfHour,HourOfDay,DayOfWeek,DayOfMonth,DayOfYear,],offsets.Second: [SecondOfMinute,MinuteOfHour,HourOfDay,DayOfWeek,DayOfMonth,DayOfYear,],}'''特征映射字典 features_by_offsets:这个字典将pandas的时间偏移类(如YearEnd、QuarterEnd、MonthEnd等)映射到对应的时间特征类列表。例如,对于每月的数据(MonthEnd),它映射到MonthOfYear类;对于每小时的数据(Hour),它映射到HourOfDay、DayOfWeek、DayOfMonth和DayOfYear类。'''offset = to_offset(freq_str)#使用pandas的to_offset函数将频率字符串(如"12H")转换为相应的pandas时间偏移对象。for offset_type, feature_classes in features_by_offsets.items():if isinstance(offset, offset_type):return [cls() for cls in feature_classes]'''遍历映射字典,检查提供的偏移对象是否属于字典中的某个偏移类型。如果找到匹配,为每个相关的特征类创建一个实例,并将这些实例作为列表返回。'''supported_freq_msg = f"""Unsupported frequency {freq_str}The following frequencies are supported:Y   - yearlyalias: AM   - monthlyW   - weeklyD   - dailyB   - business daysH   - hourlyT   - minutelyalias: minS   - secondly"""raise RuntimeError(supported_freq_msg)

4 time_features

'''
从日期数据中提取有用的时间特征
'''
def time_features(dates, timeenc=0, freq='h'):"""> `time_features` takes in a `dates` dataframe with a 'dates' column and extracts the date down to `freq` where freq can be any of the following if `timeenc` is 0:> * m - [month]> * w - [month]> * d - [month, day, weekday]> * b - [month, day, weekday]> * h - [month, day, weekday, hour]> * t - [month, day, weekday, hour, *minute]>> If `timeenc` is 1, a similar, but different list of `freq` values are supported (all encoded between [-0.5 and 0.5]):> * Q - [month]> * M - [month]> * W - [Day of month, week of year]> * D - [Day of week, day of month, day of year]> * B - [Day of week, day of month, day of year]> * H - [Hour of day, day of week, day of month, day of year]> * T - [Minute of hour*, hour of day, day of week, day of month, day of year]> * S - [Second of minute, minute of hour, hour of day, day of week, day of month, day of year]*minute returns a number from 0-3 corresponding to the 15 minute period it falls into."""if timeenc==0:dates['month'] = dates.date.apply(lambda row:row.month,1)dates['day'] = dates.date.apply(lambda row:row.day,1)dates['weekday'] = dates.date.apply(lambda row:row.weekday(),1)dates['hour'] = dates.date.apply(lambda row:row.hour,1)dates['minute'] = dates.date.apply(lambda row:row.minute,1)dates['minute'] = dates.minute.map(lambda x:x//15)freq_map = {'y':[],'m':['month'],'w':['month'],'d':['month','day','weekday'],'b':['month','day','weekday'],'h':['month','day','weekday','hour'],'t':['month','day','weekday','hour','minute'],}return dates[freq_map[freq.lower()]].values'''此模式下,函数直接从日期中提取特定的时间特征,如月份、日期、星期几、小时和分钟。freq参数指定要提取的时间特征的精度。例如,如果freq为'd',则提取月、日和星期几。对于分钟,它被转换为一个从0到3的数字,表示15分钟的时间段。'''if timeenc==1:dates = pd.to_datetime(dates.date.values)return np.vstack([feat(dates) for feat in time_features_from_frequency_str(freq)]).transpose(1,0)'''此模式下,函数使用time_features_from_frequency_str函数来获取一组特征提取器,并应用它们来转换时间数据。这些特征提取器提取的特征被编码在[-0.5, 0.5]的范围内,以提供规范化的时间特征。
freq参数在这种情况下也指定了提取的时间特征的类型和精度。'''

http://www.yayakq.cn/news/67179/

相关文章:

  • 旅游电子商务的三创赛网站建设网站建设杭州哪家便宜
  • 帮客户做网站 没签合同咋办网架加工厂有招工的吗
  • 最超值的郑州网站建设网站建设框架编写目的
  • 公司网站设计 杭州 推荐什么视频直播网站做挣钱
  • 欧美网站模板下载建设银行公积金预约网站
  • 梅州建站哪里好门户网站 方案
  • 网站的友情链接怎么做ip地址域名解析
  • 青岛做网站建公司网站设计的目标
  • 模具东莞网站建设红孩子网站建设
  • 一个网站的建设流程有哪些资料个人网页设计说明500字
  • iis网站发布教程30岁转行做网站编辑
  • 建网站需要什么语言制作一个网址需要多少钱
  • 长春网站免费制作沈阳企业自助建站系统
  • 网站建设一般要提供什么内容平台网站制作公司
  • 广州设计工作室集中地黄冈网站建设优化排名
  • 廊坊市安次区建设局网站北京个人制作网站
  • 深圳市做网站的有那些公司微商城分销系统设计|分销电商系统app软件
  • 高端网站建设好的公司典型的网站案例
  • 做网站 域名 最快要多久绵阳房产网
  • 泉州有专门帮做网站的吗动漫制作专业个人简历
  • 兼积做调查挣钱网站周杰伦做的广告网站
  • 人力资源网站开发说明书手机网站建设wap
  • 石家庄个人做网站城乡建设管理局的网站
  • 电话做网站的推广wordpress um插件
  • 全栈工程师是做网站吗好看的html页面
  • 资源seo网站优化排名代码查询网站
  • 如何发布一个网站互联网营销服务
  • 重庆第一门户网站郑州企业网站建站
  • 网站设置右击不了如何查看源代码dedecms免费模板
  • 做彩票网站违法的吗wordpress变成英文了