当前位置: 首页 > news >正文

北京手机网站设计报价网页版微信聊天记录怎么删除

北京手机网站设计报价,网页版微信聊天记录怎么删除,响应式营销网站,电商设计公司排名一. 使用kohya_ss的GUI版本(https://github.com/bmaltais/kohya_ss.git) 这个版本跟stable-diffusion-webui的界面很像,只不过是训练模型专用而已,打开的端口同样是7860。 1.双击setup.bat,选择1安装好xformers,pytorch等和cuda…

一. 使用kohya_ss的GUI版本(https://github.com/bmaltais/kohya_ss.git)

这个版本跟stable-diffusion-webui的界面很像,只不过是训练模型专用而已,打开的端口同样是7860。

1.双击setup.bat,选择1安装好xformers,pytorch等和cuda相关的库,然后可以control+C退出.将requirements.txt里面的内容除了“-e .”外复制到req.txt,然后在虚拟环境下({venv}\Scripts=E:\SD_WIN\kohya_ss\venv\Scripts)执行下面代码加速安装:

pip install -r {xxx}/req.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装结束后,重新双击setup.bat并选择1,查缺补漏。

2.双击gui.bat运行,这个和stable-diffusion-webui不一样,不会自动打开浏览器的。自行在chrome上输入“http://127.0.0.1:7860/”.

注意:默认选择的是dreambooth,不要一上来就设置哦,那玩意非常大,通常一次7G+,默认来20次,哈哈
3.选择Lora标签,SD1.5模块不需要考虑Accelerate launch,设置model,注意“Pretrained model name or path”最好先点 选择好路径,然后点 选好模型。类似这样
值得一提的是图片和数据应该是放一块的,比如C:/database/1_images/ 里面的数据应该是1个图片对应一个text文本,类似这样:
这个另外图中的pr是模块输出的文件名,我这是测试,随便按的。
如果不需要调整啥参数,默认是值就是给SD1.5用的,所以我跳过“Parameters”等,只需要填写好“Folders”
主要是填好输出路径,logs路径随便填。
4.start training
==========以上是SD-Scripts GUI版本训练SD1.5的测试================
本来我也想测一下SDXL版本的Lora训练的,奈何机器不行,机器显存8G+,内存16G+的,一直出错,可以考虑改一下“Accelerate launch”的“Mixed precision”=“no”,我这边改了后还是没法通过,主要还是机器问题,out of memory,哈哈

19:07:38-166454 INFO     Start training LoRA Standard ...
19:07:38-167453 INFO     Validating lr scheduler arguments...
19:07:38-168449 INFO     Validating optimizer arguments...
19:07:38-169446 INFO     Validating E:/SD_WIN/kohya_ss/logs existence and writability... SUCCESS
19:07:38-171441 INFO     Validating E:/SD_WIN/kohya_ss/outputs existence and writability... SUCCESS
19:07:38-172439 INFO     Validating E:/SD_WIN/stable-diffusion-webui/models/Stable-diffusion/sd_xl_base_1.0.safetensorsexistence... SUCCESS
19:07:38-173436 INFO     Validating C:/sdxl existence... SUCCESS
19:07:38-174433 INFO     Folder 1_images: 1 repeats found
19:07:38-186400 INFO     Folder 1_images: 8 images found
19:07:38-187399 INFO     Folder 1_images: 8 * 1 = 8 steps
19:07:38-188396 INFO     Regulatization factor: 1
19:07:38-189394 INFO     Total steps: 8
19:07:38-190389 INFO     Train batch size: 1
19:07:38-191387 INFO     Gradient accumulation steps: 1
19:07:38-192384 INFO     Epoch: 1
19:07:38-193383 INFO     Max train steps: 1600
19:07:38-193383 INFO     stop_text_encoder_training = 0
19:07:38-194380 INFO     lr_warmup_steps = 160
19:07:38-221307 INFO     Saving training config to E:/SD_WIN/kohya_ss/outputs\pr1_sdxl_20240515-190738.json...
19:07:38-256213 INFO     Executing command: E:\SD_WIN\kohya_ss\venv\Scripts\accelerate.EXE launch --dynamo_backend no--dynamo_mode default --mixed_precision no --num_processes 1 --num_machines 1--num_cpu_threads_per_process 2 E:/SD_WIN/kohya_ss/sd-scripts/sdxl_train_network.py--config_file E:/SD_WIN/kohya_ss/outputs/config_lora-20240515-190738.toml
19:07:38-263218 INFO     Command executed.
2024-05-15 19:08:39 INFO     Loading settings from                                                    train_util.py:3744E:/SD_WIN/kohya_ss/outputs/config_lora-20240515-190738.toml...INFO     E:/SD_WIN/kohya_ss/outputs/config_lora-20240515-190738                   train_util.py:3763
2024-05-15 19:08:39 INFO     prepare tokenizers                                                   sdxl_train_util.py:134
2024-05-15 19:08:41 INFO     update token length: 75                                              sdxl_train_util.py:159INFO     Using DreamBooth method.                                               train_network.py:172INFO     prepare images.                                                          train_util.py:1572INFO     found directory C:\sdxl\1_images contains 8 image files                  train_util.py:1519WARNING  No caption file found for 1 images. Training will continue without       train_util.py:1550captions for these images. If class token exists, it will be used. /1枚の画像にキャプションファイルが見つかりませんでした。これらの画像についてはキャプションなしで学習を続行します。classtokenが存在する場合はそれを使います。WARNING  C:\sdxl\1_images\videoplayback[(000859)2023-11-09-22-17-15].jpg          train_util.py:1557INFO     8 train images with repeating.                                           train_util.py:1613INFO     0 reg images.                                                            train_util.py:1616WARNING  no regularization images / 正則化画像が見つかりませんでした              train_util.py:1621INFO     [Dataset 0]                                                              config_util.py:565batch_size: 1resolution: (1024, 1024)enable_bucket: Truenetwork_multiplier: 1.0min_bucket_reso: 256max_bucket_reso: 2048bucket_reso_steps: 64bucket_no_upscale: True[Subset 0 of Dataset 0]image_dir: "C:\sdxl\1_images"image_count: 8num_repeats: 1shuffle_caption: Falsekeep_tokens: 0keep_tokens_separator:secondary_separator: Noneenable_wildcard: Falsecaption_dropout_rate: 0.0caption_dropout_every_n_epoches: 0caption_tag_dropout_rate: 0.0caption_prefix: Nonecaption_suffix: Nonecolor_aug: Falseflip_aug: Falseface_crop_aug_range: Nonerandom_crop: Falsetoken_warmup_min: 1,token_warmup_step: 0,is_reg: Falseclass_tokens: imagescaption_extension: .txtINFO     [Dataset 0]                                                              config_util.py:571INFO     loading image sizes.                                                      train_util.py:853
100%|██████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 2025.13it/s]INFO     make buckets                                                              train_util.py:859WARNING  min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is   train_util.py:876set, because bucket reso is defined by image size automatically /bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されますINFO     number of images (including repeats) /                                    train_util.py:905各bucketの画像枚数(繰り返し回数を含む)INFO     bucket 0: resolution (1024, 1024), count: 8                               train_util.py:910INFO     mean ar error (without repeats): 0.0                                      train_util.py:915WARNING  clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません   sdxl_train_util.py:343INFO     preparing accelerator                                                  train_network.py:225
accelerator device: cudaINFO     loading model for process 0/1                                         sdxl_train_util.py:30INFO     load StableDiffusion checkpoint:                                      sdxl_train_util.py:70E:/SD_WIN/stable-diffusion-webui/models/Stable-diffusion/sd_xl_base_1.0.safetensors
2024-05-15 19:08:47 INFO     building U-Net                                                       sdxl_model_util.py:192INFO     loading U-Net from checkpoint                                        sdxl_model_util.py:196
2024-05-15 19:11:37 INFO     U-Net: <All keys matched successfully>                               sdxl_model_util.py:202
2024-05-15 19:11:38 INFO     building text encoders                                               sdxl_model_util.py:205
2024-05-15 19:11:41 INFO     loading text encoders from checkpoint                                sdxl_model_util.py:258
2024-05-15 19:11:47 INFO     text encoder 1: <All keys matched successfully>                      sdxl_model_util.py:272
2024-05-15 19:12:15 INFO     text encoder 2: <All keys matched successfully>                      sdxl_model_util.py:276INFO     building VAE                                                         sdxl_model_util.py:279
2024-05-15 19:12:19 INFO     loading VAE from checkpoint                                          sdxl_model_util.py:284
2024-05-15 19:12:23 INFO     VAE: <All keys matched successfully>                                 sdxl_model_util.py:287
2024-05-15 19:12:36 INFO     Enable xformers for U-Net                                                train_util.py:2660
import network module: networks.lora
2024-05-15 19:12:40 INFO     [Dataset 0]                                                              train_util.py:2079INFO     caching latents.                                                          train_util.py:974INFO     checking cache validity...                                                train_util.py:984
100%|████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<?, ?it/s]INFO     caching latents...                                                       train_util.py:1021
100%|████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:37<00:00,  4.75s/it]
2024-05-15 19:13:19 INFO     create LoRA network. base dim (rank): 8, alpha: 1                               lora.py:810INFO     neuron dropout: p=None, rank dropout: p=None, module dropout: p=None            lora.py:811INFO     create LoRA for Text Encoder 1:                                                 lora.py:902INFO     create LoRA for Text Encoder 2:                                                 lora.py:902
2024-05-15 19:13:20 INFO     create LoRA for Text Encoder: 264 modules.                                      lora.py:910INFO     create LoRA for U-Net: 722 modules.                                             lora.py:918INFO     enable LoRA for text encoder                                                    lora.py:961INFO     enable LoRA for U-Net                                                           lora.py:966
prepare optimizer, data loader etc.
2024-05-15 19:13:24 INFO     use 8-bit AdamW optimizer | {}                                           train_util.py:3889
Traceback (most recent call last):File "E:\SD_WIN\kohya_ss\sd-scripts\sdxl_train_network.py", line 185, in <module>trainer.train(args)File "E:\SD_WIN\kohya_ss\sd-scripts\train_network.py", line 429, in trainunet = accelerator.prepare(unet)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\accelerator.py", line 1213, in prepareresult = tuple(File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\accelerator.py", line 1214, in <genexpr>self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\accelerator.py", line 1094, in _prepare_onereturn self.prepare_model(obj, device_placement=device_placement)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\accelerator.py", line 1334, in prepare_modelmodel = model.to(self.device)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 1160, in toreturn self._apply(convert)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 810, in _applymodule._apply(fn)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 810, in _applymodule._apply(fn)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 810, in _applymodule._apply(fn)[Previous line repeated 6 more times]File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 833, in _applyparam_applied = fn(param)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 1158, in convertreturn t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacty of 4.00 GiB of which 0 bytes is free. Of the allocated memory 10.68 GiB is allocated by PyTorch, and 226.95 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Traceback (most recent call last):File "C:\Python310\lib\runpy.py", line 196, in _run_module_as_mainreturn _run_code(code, main_globals, None,File "C:\Python310\lib\runpy.py", line 86, in _run_codeexec(code, run_globals)File "E:\SD_WIN\kohya_ss\venv\Scripts\accelerate.EXE\__main__.py", line 7, in <module>File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\commands\accelerate_cli.py", line 47, in mainargs.func(args)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 1017, in launch_commandsimple_launcher(args)File "E:\SD_WIN\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 637, in simple_launcherraise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
subprocess.CalledProcessError: Command '['E:\\SD_WIN\\kohya_ss\\venv\\Scripts\\python.exe', 'E:/SD_WIN/kohya_ss/sd-scripts/sdxl_train_network.py', '--config_file', 'E:/SD_WIN/kohya_ss/outputs/config_lora-20240515-190738.toml']' returned non-zero exit status 1.
19:16:29-337912 INFO     Training has ended.

二、ComfyUI之插件Lora-Training-in-Comfy(https://github.com/LarryJane491/Lora-Training-in-Comfy.git),顺道也安装一下Image-Captioning-in-ComfyUI(https://github.com/LarryJane491/Image-Captioning-in-ComfyUI.git)和Vector_Sculptor_ComfyUI(https://github.com/Extraltodeus/Vector_Sculptor_ComfyUI.git)

在“custom_nodes”下clone它下来,重启安装,一般大概率是没法顺顺利利的,自行安装一些库,我这边列一下xformers和pytorch几个需要注意的库,其他的随意吧

accelerate                0.29.3
library                   0.0.0              E:\SD_WIN\ComfyUI_windows_portable\ComfyUI\custom_nodes\Lora-Training-in-Comfy\sd-scripts
torch                     2.3.0+cu121
torchaudio                2.3.0+cu121
torchvision               0.18.0+cu121
xformers                  0.0.26.post1

xformers优先安装,使用

{venv}/Scripts/pip.exe install xformers --index-url --index-url https://download.pytorch.org/whl/cu121
然后根据pytorch的版本提示安装torchaudio和torchvision我的例子:{venv}/Scripts/pip.exe install xformers==0.0.26.post1 torch==2.3.0+cu121 torchaudio==2.3.0+cu121 torchvision==0.18.0+cu121 --index-url https://download.pytorch.org/whl/cu121

其次要到“custom_nodes/Lora-Training-in-Comfy/sd-scripts/library”目录下运行

{venv}/Scripts/pip.exe install -e .

后面这一步没做的话,可能会遇到library模块加不来,要是直接用线上的安装就傻眼了,大概率是对不上号的。

重新双击run_nvidia_gpu.bat运行ComfyUI,添加节点“LJRE/LORA/LORA training in ComfyUI”,SD1.5的LORA只需要改三个配置就可以运行了。

output_dir最好是相对run_nvidia_gpu.bat所在的路径,这样得到的lora不需要复制,重启ComfyUI就可以测试。

这个插件有个大问题,就是很多机器没法正常运行,哈哈,没错,是真的。我建议有两点:

1.更新sd-scripts,将原来删了,在同路径下运行

​
git clone https://github.com/kohya-ss/sd-scripts.git​

安装参考上面

2.修改train.py。 搜索"python -m accelerate",改为“{vevn-path}/python.exe -m accelerate”,vevn-path应该是run_nvidia_gpu.bat同目录下的python_embeded的绝对路径。(注:下载一键安装包,要是clone的版本应该自己知道venv路径的)

最后补充一张根据图片提取文本的流程图

用到Comfyui_image2prompt(https://github.com/zhongpei/Comfyui_image2prompt.git),这玩意要是完整几乎不太可能,低端机器下wd-swinv2-tagger-v3-hf足够了。等有空再聊聊这个插件的安装经历。

当然也可以安装其他的插件代替的,WD14是不太可能了,还有其他的插件可以考虑。

http://www.yayakq.cn/news/956353/

相关文章:

  • 网站优化合同模板免费行情软件网站下载大全爱
  • 不会编程能做网站吗asp 网站名字
  • 提供免费建网站的网网站建设美橙
  • 公司网站服务器租赁字体设计比较好的网站
  • 电子商务网站建设实训 报告C2C电子商务网站管理系统
  • 美工宝盒网站环保网站设计
  • 珠宝网站建设的主要方式网站多语言建设
  • 营销型网站建设题库电子商务网站开发与管理
  • 番禺网站建设效果wordpress视频滑块
  • 网站备案是一年一次吗用模板搭建的网站备案吗
  • 做淘客应该知道的网站网站设计就业前景分析
  • 企业网站怎么注册官网wordpress插件进销存
  • 网站建设 大公司好二级域名免费分发站
  • 辛集seo网站优化价格做网站提高淘宝店排名
  • oss如何做网站比较大的做网站的公司
  • 做网站要什么上海网络建设规划
  • 凡科申请的网站和qq空间一样吗学php网站开发好吗
  • 群晖wordpress主机多语言网站 seo
  • 网站被k恢复wordpress 好的相册
  • 域名站长工具免费ppt模板可编辑
  • 梅州网站优化公司推广网络广告
  • 网站目录怎么做怎么提高网站速度
  • 网站建设与管理试卷A中科汇联网站建设手册
  • 自助网站能在百度上搜到么企业网站用什么做二次开发最快
  • 自己制作一个网站怎么制作做八闽最好的中学网站
  • 江苏网站开发建设电话个人网站做联盟营销
  • 电商型网站建设价格谷歌浏览器chrome官网
  • 城乡建设杂志社官方网站什么用wordpress
  • 阿里云域名怎样做网站高端+旅游+网站建设
  • 做区位分析的网站优化建站