当前位置: 首页 > news >正文

哈尔滨松北区建设局网站天津建设工程竣工备案公示网站

哈尔滨松北区建设局网站,天津建设工程竣工备案公示网站,东莞洪梅网站建设,自助建站申请书题目描述 格雷编码序列是一个二进制数字序列,其中的每两个相邻的数字只有一个二进制位不同。给定一个整数 n,表示格雷编码的位数,要求返回 n 位的格雷编码序列。 示例 1 输入: n 2输出: [0, 1, 3, 2]解释&#x…

题目描述

格雷编码序列是一个二进制数字序列,其中的每两个相邻的数字只有一个二进制位不同。给定一个整数 n,表示格雷编码的位数,要求返回 n 位的格雷编码序列。

示例 1

输入

n = 2

输出

[0, 1, 3, 2]

解释

  • 对于 n = 2,对应的格雷编码序列为 [00, 01, 11, 10],它们的十进制表示为 [0, 1, 3, 2]

示例 2

输入

n = 3

输出

[0, 1, 3, 2, 6, 7, 5, 4]

解释

  • 对于 n = 3,对应的格雷编码序列为 [000, 001, 011, 010, 110, 111, 101, 100],它们的十进制表示为 [0, 1, 3, 2, 6, 7, 5, 4]

解题思路

格雷编码序列的生成有两种常见方法:

  1. 递归法
  2. 数学公式法

方法 1:递归法(构建反射法)

递归的核心思想是:

  1. 通过已有的 n n n 位的格雷编码序列,构建 n + 1 n+1 n+1 位的格雷编码序列。
  2. 假设已有 n n n 位的格雷编码序列为 G(n),我们可以通过以下方法得到 G(n+1)
    • G(n+1) 的前半部分是 G(n) 本身。
    • G(n+1) 的后半部分是 G(n) 的每个元素前面加上一个 1,并且反转原序列的顺序。

举个例子:

  • 对于 n = 1,格雷编码序列是 [0, 1]
  • 对于 n = 2,格雷编码序列是 [00, 01, 11, 10]

方法 2:数学公式法

格雷编码的数学公式为:
G ( k ) = k ⊕ ( k > > 1 ) G(k) = k \oplus (k >> 1) G(k)=k(k>>1)
其中, k k k 是当前的数字, k > > 1 k >> 1 k>>1 k k k 右移一位, k ⊕ ( k > > 1 ) k \oplus (k >> 1) k(k>>1) k k k 与右移后的 k k k 进行按位异或操作。

使用该公式可以快速生成格雷编码序列。


代码实现

方法 1:递归法

#include <stdio.h>
#include <stdlib.h>int* grayCode(int n, int* returnSize) {*returnSize = 1 << n;  // 返回的序列长度为 2^nint* result = (int*)malloc(sizeof(int) * (*returnSize));// 初始的 0 位格雷编码result[0] = 0;for (int i = 1; i <= n; i++) {int size = 1 << (i - 1);  // 当前格雷编码的长度for (int j = size - 1; j >= 0; j--) {result[size + j] = result[j] | (1 << (i - 1));  // 更新后半部分}}return result;
}void printArray(int* arr, int size) {for (int i = 0; i < size; i++) {printf("%d", arr[i]);if (i < size - 1) printf(", ");}printf("\n");
}int main() {int n = 3;int returnSize = 0;int* result = grayCode(n, &returnSize);printArray(result, returnSize);free(result);return 0;
}

方法 2:数学公式法

#include <stdio.h>
#include <stdlib.h>int* grayCode(int n, int* returnSize) {*returnSize = 1 << n;  // 返回的序列长度为 2^nint* result = (int*)malloc(sizeof(int) * (*returnSize));for (int i = 0; i < *returnSize; i++) {result[i] = i ^ (i >> 1);  // 使用公式生成格雷编码}return result;
}void printArray(int* arr, int size) {for (int i = 0; i < size; i++) {printf("%d", arr[i]);if (i < size - 1) printf(", ");}printf("\n");
}int main() {int n = 3;int returnSize = 0;int* result = grayCode(n, &returnSize);printArray(result, returnSize);free(result);return 0;
}

代码详解

1. 递归法实现

  • 我们从最简单的格雷编码 [0] 开始,逐步扩展到 n n n 位。
  • 每次扩展时,通过反射法创建新的序列:
    • 将已有的序列复制到前半部分。
    • 将每个数值在前面加上 1,并将该部分的顺序反转,加入到后半部分。

2. 数学公式法实现

  • 通过公式 G ( k ) = k ⊕ ( k > > 1 ) G(k) = k \oplus (k >> 1) G(k)=k(k>>1) 来计算每个数字的格雷编码。
  • 通过位运算,我们可以在 O ( 1 ) O(1) O(1) 的时间内生成每个数字的格雷编码。

时间与空间复杂度

时间复杂度

  • 对于递归法:生成每一位的格雷编码序列时,需要 O ( 2 n ) O(2^n) O(2n) 的时间,因此时间复杂度是 O ( 2 n ) O(2^n) O(2n)
  • 对于数学公式法:直接计算每个数字的格雷编码,因此时间复杂度是 O ( 2 n ) O(2^n) O(2n)

空间复杂度

  • 对于两种方法:需要存储生成的格雷编码序列,空间复杂度是 O ( 2 n ) O(2^n) O(2n)

测试用例

示例 1:

输入

n = 2

输出

[0, 1, 3, 2]

示例 2:

输入

n = 3

输出

[0, 1, 3, 2, 6, 7, 5, 4]
http://www.yayakq.cn/news/298647/

相关文章:

  • 新网站开发工作总结网站策划书的意义
  • 超级工程网站建设石家庄房产备案查询网
  • 深圳的网站建设公司有哪些注册公司流程步骤
  • dw怎么做秋季运动会网站中国排名第一的游戏
  • 中英双语网站课程网站建设特色
  • 代刷网站推广快速nodejs网站开发教程
  • ashx做网站罗湖商城网站建设哪家服务周到
  • 东莞外贸建站及推广规划设计公司
  • 商标查询网站怎么做清新太和做网站
  • 怎么查网站注册时间注册50万公司一年税是多少
  • 什么网站收录快英文seo如何优化
  • php网站登录系统怎么做企业网站管理系统 源码
  • 建设银行代发工资网站网站ftp上传工具哪个好用
  • 广州学习网站建设关键词排名点击软件怎样
  • 门户网站开发报价石家庄网站建设网站
  • 宁波企业制作网站网站设计优点
  • 做代销的网站广州专业网站建设报价
  • 手机分销网站网站前端设计理念
  • 温州网站优化排名深圳外贸公司名单
  • 德阳网站设计上优化seo
  • 广州网站改版 网站建设灰色关键词排名方法
  • 布吉网站建设公司大连的网站设计公司电话
  • 关于建设官方网站的申请荆州网站开发
  • 天津公司网站建设公司哪家好自助定制网站开发公司
  • 域名和网站空间相互做解析做wordpress挣钱
  • 网站的大量图片存储格式注册网站怎么做
  • 网站不做301可以吗重庆做网站 帮助中心
  • 策划书网站那些网站容易做淘宝推广
  • wap网站推荐电商erp网站开发
  • 太原网站建设策划微商城官网地址