当前位置: 首页 > news >正文

公司网站用模板做北京代理记账财务公司

公司网站用模板做,北京代理记账财务公司,263个人邮箱注册,网站建设现在主要做些什么目录 一. 软间隔模型1. 松弛因子的解释小节 2. SVM软间隔模型总结 线性可分SVM中,若想找到分类的超平面,数据必须是线性可分的;但在实际情况中,线性数据集存在少量的异常点,导致SVM无法对数据集线性划分 也就是说&…

目录

  • 一. 软间隔模型
    • 1. 松弛因子的解释
      • 小节
    • 2. SVM软间隔模型总结

线性可分SVM中,若想找到分类的超平面,数据必须是线性可分的;但在实际情况中,线性数据集存在少量的异常点,导致SVM无法对数据集线性划分

也就是说:正常数据本身是线性可分的,但是由于存在异常点数据,导致数据集不能够线性可分
在这里插入图片描述

一. 软间隔模型

为了解决上述问题,我们引入软间隔的概念:

1. 松弛因子的解释

  • 硬间隔: 线性划分SVM中的硬间隔是距离度量;在线性划分SVM中,要求函数距离一定是大于等于1的,最大化硬间隔条件为: { m i n 1 2 ∥ w → ∥ 2 s . t : y ( i ) ( ω T ⋅ x ( i ) + b ) ≥ 1 , i = 1 , 2 , . . . , m \left\{\begin{matrix}min\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} \\s.t: y^{(i)} (\omega ^{T}\cdot x^{(i)} +b)\ge1,i=1,2,...,m \end{matrix}\right. {min21 w 2s.ty(i)(ωTx(i)+b)1i=1,2,...,m
  • 软间隔:SVM对于训练集中的每个样本都引入一个松弛因子(ξ),使得函数距离加上松弛因子后的值是大于等于1; y ( i ) ( ω T ⋅ x ( i ) + b ) ≥ 1 − ξ ; i = 1 , 2 , . . . , m , ξ ≥ 0 y^{(i)} (\omega ^{T}\cdot x^{(i)} +b)\ge1-\xi ;i=1,2,...,m,\xi\ge 0 y(i)(ωTx(i)+b)1ξi=1,2,...,mξ0

松弛因子(ξ)表示:相对于硬间隔,对样本到超平面距离的要求放松了

ξ = 0 ξ=0 ξ=0 , 相当于硬间隔
0 < ξ < 1 0<ξ<1 0<ξ<1 , 相当于样本点位于“街”内
ξ > 1 ξ>1 ξ>1 , 相当于样本点位于“街”对面
ξ > 2 ξ>2 ξ>2 , 相当于样本点位于“街”对面外侧

注意: ξ ξ ξ只能对少量的样本起作用

ξ ξ ξ越大,表示样本点离超平面越近,
ξ > 1 ξ>1 ξ>1,那么表示允许该样本点分错

因此:加入松弛因子是有成本的,过大的松弛因子可能会导致模型分类错误

所以,我们对存有异常点的数据集划分时,目标函数就变成了:
{ m i n 1 2 ∥ w → ∥ 2 + C ∑ i = 1 n ξ ( i ) y ( i ) ( ω T ⋅ x ( i ) + b ) ≥ 1 − ξ ( i ) , i = 1 , 2 , . . . , m \left\{\begin{matrix}min\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2}+C\sum_{i=1}^{n} \xi _{(i)} \\ \\y^{(i)} (\omega ^{T}\cdot x^{(i)} +b)\ge1-\xi ^{(i)} ,i=1,2,...,m \end{matrix}\right. min21 w 2+Ci=1nξ(i)y(i)(ωTx(i)+b)1ξ(i)i=1,2,...,m
ξ i ≥ 0 , i = 1 , 2 , . . . , m \xi{i}\ge 0,i=1,2,...,m ξi0i=1,2,...,m

公式 C ∑ i = 1 n ξ ( i ) C\sum_{i=1}^{n} \xi _{(i)} Ci=1nξ(i)表式:

    每个样本惩罚项的总和不能大,函数中的C>0是惩罚参数,需要调参

C越大,表示对错误分类的惩罚越大,也就越不允许存在分错的样本;

C越小表示对误分类的惩罚越小,也就是表示允许更多的分错样本存在

也就是说:
对于完全线性可分的数据来说,C的值可以给大一点
对于线性可分但存在异常的数据来说,C的值需要调小

小节

对于线性可分的m个样本(x1,y1),(x2,y2)… :

	x为n维的特征向量y为二元输出,即+1,-1

SVM的输出为w,b,分类决策函数

选择一个惩罚系数C>0,构造约束优化问题

{ min ⁡ β ≥ 0 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) − ∑ i = 1 m β i s . t : ∑ i = 1 m β i y ( i ) = 0 , 0 ≤ β i ≤ C , i = 1 , 2 , . . . , m \left\{\begin{matrix}\min_{\beta \ge 0}\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)}-\sum_{i=1}^{m} \beta _{i} \\s.t:\sum_{i=1}^{m} \beta _{i} y^{(i)}=0,0\le \beta _{i}\le C,i=1,2,...,m \end{matrix}\right. {minβ021i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)i=1mβis.t:i=1mβiy(i)=00βiCi=1,2,...,m
使用SMO算法求出上述最优解 β \beta β
找到所有支持向量集合:
S = ( x ( i ) , y ( i ) ) ( 0 < β i < C , i = 1 , 2 , . . . , m ) S = (x^{(i)}, y^{(i)}) (0<\beta_{i} < C,i=1,2,...,m) S=(x(i),y(i))(0<βi<C,i=1,2,...,m)
从而更新w,b

w = ∑ i = 1 m β i x ( i ) y ( i ) w=\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} w=i=1mβix(i)y(i)

b = 1 S ∑ i = 1 S ( y s − ∑ i = 1 m β i x ( i ) T y ( i ) x s ) b=\frac{1}{S} \sum_{i=1}^{S}(y^{s}- \sum_{i=1}^{m} \beta _{i} x^{(i)^{T}}y^{(i)}x^{s} ) b=S1i=1S(ysi=1mβix(i)Ty(i)xs)

构造最终的分类器,为:
f ( x ) = s i g n ( w ∗ x + b ) f(x)=sign(w\ast x+b) f(x)=sign(wx+b)

	x<0时,y=-1x=0时,y=0x>0时,y=1注意:假设,不会出现0若出现,正负样本随意输出一个,即+0.00000001或-0.00000001都可以

2. SVM软间隔模型总结

	可以解决线性数据中存在异常点的分类模型构建问题通过引入松弛因子,可以增加模型的泛化能力,即鲁棒性;对于模型而言:如果给定的惩罚项系数C越小,表示在模型构建的时候,就允许存在越多的分类错误的样本,也就表示此时模型的准确率会比较低;如果惩罚项系数越大,表示在模型构建的时候,就越不允许存在分类错误的样本,也就表示此时模型的准确率会比较高。

感谢阅读🌼
如果喜欢这篇文章,记得点赞👍和转发🔄哦!
有任何想法或问题,欢迎留言交流💬,我们下次见!

祝愉快🌟!


http://www.yayakq.cn/news/600761/

相关文章:

  • html 网站模板简单wordpress一键排版
  • 舟山建设信息港网站国内好用的五款开源建站系统
  • app应用网站html5模板网站特效js代码
  • 建了一个网站 如何找到放图片的文件夹建站工具有哪些
  • 手机网站自适应aspcms网站模板
  • 深圳网站建设售后服务怎样wordpress 用户群组
  • 网站内外链建设互联网广告联盟
  • 石碣网站仿做html仿淘宝首页电子商务网站首页
  • 网站从域名苏州网站地址
  • 网页网站设计价格编写网站程序
  • 营销型网站建设风格设定上海网站制作怎么选
  • 网页设计需要学什么知乎济南网站优化公司排名
  • 青岛网站建设公司 中小企业补贴网站联盟三要素
  • 衡水网站建设知识网站建设 ipc备案
  • 网站备案ip查询系统最大的源码分享平台
  • 做阿里巴巴跟网站哪个更好宜昌市住房和城乡建设局网站
  • 工会门户网站建设需求网站被黑
  • 最好的个人网站建设嘉兴网站制作计划
  • 珠海网站关键词排名服务商成都创新互联网站建设
  • 最早做美食团购的网站如何建设网站兴田德润可以吗
  • 建视频网站多少钱Win10卸载wordpress
  • 网站建设源码包一般网站建设公司怎么收费
  • 基层建设 网站如何建设网站内容
  • 网站设计方案策划贵州网站设计
  • 企业视频网站模板正规的无锡网站建设
  • wordpress 文章 来源seo站外优化最主要的是什么
  • 黑龙江建设集团网站室内设计效果图全景图
  • 网站建设公司地址在哪合肥php网站开发
  • 网站提供服务商小程
  • 厦门谁需要网站建设WordPress发货