当前位置: 首页 > news >正文

交互设计就业前景关键字优化技巧

交互设计就业前景,关键字优化技巧,wordpress添加文件2m,为什么要建设公司网站【LetMeFly】3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划) 力扣题目链接:https://leetcode.cn/problems/maximum-sum-of-subsequence-with-non-adjacent-elements/ 给你一个整数数组 nums 和一个二维数组 q…

【LetMeFly】3165.不包含相邻元素的子序列的最大和:单点修改的线段树(动态规划)

力扣题目链接:https://leetcode.cn/problems/maximum-sum-of-subsequence-with-non-adjacent-elements/

给你一个整数数组 nums 和一个二维数组 queries,其中 queries[i] = [posi, xi]

对于每个查询 i,首先将 nums[posi] 设置为 xi,然后计算查询 i 的答案,该答案为 nums不包含相邻元素 的 子序列 的 最大 和。

返回所有查询的答案之和。

由于最终答案可能非常大,返回其对 109 + 7 取余 的结果。

子序列 是指从另一个数组中删除一些或不删除元素而不改变剩余元素顺序得到的数组。

 

示例 1:

输入:nums = [3,5,9], queries = [[1,-2],[0,-3]]

输出:21

解释:
执行第 1 个查询后,nums = [3,-2,9],不包含相邻元素的子序列的最大和为 3 + 9 = 12
执行第 2 个查询后,nums = [-3,-2,9],不包含相邻元素的子序列的最大和为 9 。

示例 2:

输入:nums = [0,-1], queries = [[0,-5]]

输出:0

解释:
执行第 1 个查询后,nums = [-5,-1],不包含相邻元素的子序列的最大和为 0(选择空子序列)。

 

提示:

  • 1 <= nums.length <= 5 * 104
  • -105 <= nums[i] <= 105
  • 1 <= queries.length <= 5 * 104
  • queries[i] == [posi, xi]
  • 0 <= posi <= nums.length - 1
  • -105 <= xi <= 105

解题方法:线段树 + DP

对于单次操作,我们可以使用分治的方法来求解。对于一个子区间,我们比较关注的有:区间第一个元素是否被选取、区间最后一个元素是否被选取。也就是说,对于一个子区间,一共有以下4种情况:

  • 开头一定不选,结尾一定不选,记为 f 00 f00 f00
  • 开头一定不选,结尾可选(也可不选),记为 f 01 f01 f01
  • 开头可选(也可不选),结尾一定不选,记为 f 10 f10 f10
  • 开头可选(也可不选),结尾可选(也可不选),记为 f 11 f11 f11

那么对于区间 [ l e f t , r i g h t ] [left, right] [left,right],如何进行分治操作呢?

  • 如果 l e f t = = r i g h t left==right left==right,那么这个区间就只有一个元素,这个区间的 f 00 = f 01 = f 10 = 0 f00=f01=f10=0 f00=f01=f10=0 f 11 = max ⁡ ( 0 , n u m s [ l e f t ] ) f11=\max(0, nums[left]) f11=max(0,nums[left])

  • 否则,令 m i d = ⌊ l e f t + r i g h t 2 ⌋ mid = \lfloor\frac{left+right}{2}\rfloor mid=2left+right,递归计算 [ l e f t , m i d ] [left, mid] [left,mid] [ m i d + 1 , r i g h t ] [mid + 1, right] [mid+1,right]两个子区间的4个值并汇总得到这个区间的4个值。

    假设左区间为 p p p,右区间为 q q q,则汇总方式为:

    • f 00 = max ⁡ ( f p 00 + f q 10 , f p 01 + f q 00 ) f00 = \max(f_p00+f_q10, f_p01+f_q00) f00=max(fp00+fq10,fp01+fq00)
    • f 01 = max ⁡ ( f p 00 + f q 11 , f p 01 + f q 01 ) f01 = \max(f_p00+f_q11, f_p01+f_q01) f01=max(fp00+fq11,fp01+fq01)
    • f 10 = max ⁡ ( f p 10 + f q 10 , f p 11 + f q 00 ) f10 = \max(f_p10+f_q10, f_p11+f_q00) f10=max(fp10+fq10,fp11+fq00)
    • f 11 = max ⁡ ( f p 10 + f q 11 , f p 11 + f q 01 ) f11 = \max(f_p10+f_q11, f_p11+f_q01) f11=max(fp10+fq11,fp11+fq01)

那么如何应对 l e n ( q u e r i e s ) len(queries) len(queries)次的修改呢?那就需要引入线段树了。

  • 对于修改操作,使用线段树实现单点修改,线段树的每个节点维护对应区间的4个值
  • 对于查询操作,线段树根节点(整个区间)的 f 11 f11 f11记为所求

时空复杂度分析

  • 时间复杂度 O ( n + q log ⁡ n ) O(n+q\log n) O(n+qlogn),其中 n = l e n ( n u m s ) n=len(nums) n=len(nums) q = l e n ( q u e r i e s ) q=len(queries) q=len(queries)
  • 空间复杂度 O ( n ) O(n) O(n)

AC代码

C++
const unsigned int mod = 1e9 + 7;class Solution {
private:vector<array<unsigned int, 4>> tree;  // 00, 01, 10, 11void maintain(int index) {int leftIndex = 2 * index + 1;int rightIndex = 2 * index + 2;tree[index] = {max(tree[leftIndex][1] + tree[rightIndex][0], tree[leftIndex][0] + tree[rightIndex][2]),max(tree[leftIndex][0] + tree[rightIndex][3], tree[leftIndex][1] + tree[rightIndex][1]),max(tree[leftIndex][2] + tree[rightIndex][2], tree[leftIndex][3] + tree[rightIndex][0]),max(tree[leftIndex][2] + tree[rightIndex][3], tree[leftIndex][3] + tree[rightIndex][1])};}void buildTree(vector<int>& nums, int index, int left, int right) {if (left == right) {tree[index] = {0, 0, 0, (unsigned int)max(nums[left], 0)};return;}int mid = (left + right) / 2;buildTree(nums, 2 * index + 1, left, mid);buildTree(nums, 2 * index + 2, mid + 1, right);maintain(index);}void update(int index, int left, int right, int modifiedI, int val) {if (left == right) {tree[index][3] = max(0, val);return;}int mid = (left + right) / 2;if (modifiedI <= mid) {update(2 * index + 1, left, mid, modifiedI, val);} else {update(2 * index + 2, mid + 1, right, modifiedI, val);}maintain(index);}
public:int maximumSumSubsequence(vector<int>& nums, vector<vector<int>>& queries) {tree.resize(nums.size() * 4);buildTree(nums, 0, 0, nums.size() - 1);unsigned int ans = 0;for (vector<int>& query : queries) {update(0, 0, nums.size() - 1, query[0], query[1]);ans = (ans + tree[0][3]) % mod;}return ans;}
};
Python
from typing import ListMOD = 1_000_000_007
class Solution:def maintain(self, index: int) -> None:leftNode = self.tree[2 * index + 1]rightNode = self.tree[2 * index + 2]self.tree[index] = [max(leftNode[0] + rightNode[2], leftNode[1] + rightNode[0]),max(leftNode[0] + rightNode[3], leftNode[1] + rightNode[1]),max(leftNode[2] + rightNode[2], leftNode[3] + rightNode[0]),max(leftNode[2] + rightNode[3], leftNode[3] + rightNode[1])]def build(self, index: int, left: int, right: int) -> None:if left == right:self.tree[index][3] = self.nums[left]returnmid = (left + right) >> 1self.build(2 * index + 1, left, mid)self.build(2 * index + 2, mid + 1, right)self.maintain(index)def update(self, index: int, left: int, right: int, modifiedI: int, val: int) -> None:if left == right:self.tree[index][3] = max(0, val)returnmid = (left + right) >> 1if modifiedI <= mid:self.update(2 * index + 1, left, mid, modifiedI, val)else:self.update(2 * index + 2, mid + 1, right, modifiedI, val)self.maintain(index)def maximumSumSubsequence(self, nums: List[int], queries: List[List[int]]) -> int:self.tree = [[0, 0, 0, 0] for _ in range(len(nums) * 4)]  # 00, 01, 10, 11self.nums = numsself.build(0, 0, len(nums) - 1)ans = 0for q, v in queries:self.update(0, 0, len(nums) - 1, q, v)ans = (ans + self.tree[0][3]) % MODreturn ans
Java
class Solution {private long[][] tree;  // 诶,如果不是long的话会有两组数据无法通过private final int mod = 1000000007;private void maintain(int index) {long[] leftNode = tree[2 * index + 1];long[] rightNode = tree[2 * index + 2];tree[index][0] = Math.max(leftNode[0] + rightNode[2], leftNode[1] + rightNode[0]);tree[index][1] = Math.max(leftNode[0] + rightNode[3], leftNode[1] + rightNode[1]);tree[index][2] = Math.max(leftNode[2] + rightNode[2], leftNode[3] + rightNode[0]);tree[index][3] = Math.max(leftNode[2] + rightNode[3], leftNode[3] + rightNode[1]);}private void build(int[] nums, int index, int left, int right) {if (left == right) {tree[index][3] = Math.max(0, nums[left]);return;}int mid = (left + right) / 2;build(nums, 2 * index + 1, left, mid);build(nums, 2 * index + 2, mid + 1, right);maintain(index);}private void update(int index, int left, int right, int modifiedI, int val) {if (left == right) {tree[index][3] = Math.max(0, val);return;}int mid = (left + right) / 2;if (modifiedI <= mid) {update(2 * index + 1, left, mid, modifiedI, val);} else {update(2 * index + 2, mid + 1, right, modifiedI, val);}maintain(index);}public int maximumSumSubsequence(int[] nums, int[][] queries) {tree = new long[4 * nums.length][4];  // 00, 01, 10, 11build(nums, 0, 0, nums.length - 1);long ans = 0;for (int[] query : queries) {update(0, 0, nums.length - 1, query[0], query[1]);ans = (ans + tree[0][3]) % mod;}return (int)ans;}
}
Go
package maintype data struct {_00 int_01 int_10 int_11 int
}type seg []datafunc max(a int, b int) int {if a >= b {return a}return b
}func maintain(tree seg, index int) {leftNode := tree[index * 2 + 1]rightNode := tree[index * 2 + 2]tree[index] = data{max(leftNode._00 + rightNode._10, leftNode._01 + rightNode._00),max(leftNode._00 + rightNode._11, leftNode._01 + rightNode._01),max(leftNode._10 + rightNode._10, leftNode._11 + rightNode._00),max(leftNode._10 + rightNode._11, leftNode._11 + rightNode._01),}
}func build(tree seg, nums []int, index int, left int, right int) {if left == right {tree[index]._11 = max(0, nums[left])return}mid := (left + right) >> 1build(tree, nums, 2 * index + 1, left, mid)build(tree, nums, 2 * index + 2, mid + 1, right)maintain(tree, index)
}func update(tree seg, index int, left int, right int, modified int, val int) {if left == right {tree[index]._11 = max(0, val)return}mid := (left + right) >> 1if modified <= mid {update(tree, 2 * index + 1, left, mid, modified, val)} else {update(tree, 2 * index + 2, mid + 1, right, modified, val)}maintain(tree, index)
}func maximumSumSubsequence(nums []int, queries [][]int) int {tree := make(seg, len(nums) * 4)build(tree, nums, 0, 0, len(nums) - 1)ans := 0for _, query := range queries {update(tree, 0, 0, len(nums) - 1, query[0], query[1])ans = (ans + tree[0]._11) % 1_000_000_007}return ans
}

同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~

Tisfy:https://letmefly.blog.csdn.net/article/details/143452715

http://www.yayakq.cn/news/75240/

相关文章:

  • 江苏省住房与城乡建设部网站做网站给源码吗
  • python做的网站有哪些网站高端设计公司哪家好
  • 企业网站建设情况说明建设网站的基本流程
  • 金凤区建设交通局网站北京网站制作设计
  • 自建网站营销是什么做平面计设和网站哪个好
  • 设计师网站都有哪些重大新闻事件
  • 织梦唯美网站源码零食软文范例300字
  • 莱阳有网站建设推广的吗注册企业有哪些基本流程
  • 吉隆网站建设浙江建设厅网站
  • 网站建设需注意点吾爱主题wordpress
  • 免费换友情链接天津seo
  • 为什么要做手机网站开发三亚网站怎么制作
  • asp网站好还是php网站好给别人做网站打电话推销
  • 搭建网站账户系统网站开发及代运营
  • 系统网站哪个好个人网站做导购要什么经营许可
  • 太仓网站建设有限公司教育网站制作论文
  • 西地那非片云南网站seo外包
  • 郑州做网站擎天凡科做网站是否安全
  • 做网站的职员称呼什么什么网站代做毕业设计比较好
  • 网站建设金手指专业周口网站优化
  • 新农村建设网站知乎宁波品牌网站设计特点
  • DW怎么做网站下拉菜单上海企业建站提供商
  • 外贸网站建设公司流程图wordpress万篇文章
  • 好看的网站页面设计兰州出台9条优化措施
  • 鹤壁市网站建设百度建站
  • 网站建设工作自策划实施以来合肥市建设工程市场价格信息网站
  • 照片制作网站贵阳网站建设公司哪个好
  • 给网站开发一个计算器功能影视文化传媒公司网站建设
  • 正邦设计董事长外贸网站如何做seo
  • 网站logo大全金山专业网站建设