当前位置: 首页 > news >正文

一个网站做两种产品wordpress 数据库爆炸

一个网站做两种产品,wordpress 数据库爆炸,品牌营销型网站作用,友汇网 做公司网站智能优化算法应用:基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.哈里斯鹰算法4.实验参数设定5.算法结果6.参考…

智能优化算法应用:基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.哈里斯鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用哈里斯鹰算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.哈里斯鹰算法

哈里斯鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/108528147
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

哈里斯鹰算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明哈里斯鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

http://www.yayakq.cn/news/833793/

相关文章:

  • 珠海做企业网站多少钱一流的微商城网站建设
  • flash网站模版哪个网站建站比较好
  • 坪山住房及建设局网站在厦门做网站找谁
  • 哪家好做网站网站开发教学视频百度云
  • 加强网站安全建设说明报告范文太原优化型网站建设
  • 电子商务网站建设报价深圳高速建设公司
  • 网站怎样制作流程江苏专业做网站的公司哪家好
  • wordpress添加轮播搜索关键词排名优化技术
  • 网站菜单分类怎么做电子菜单小程序怎么做
  • 百度网站推广一年多少钱网站模板做网站
  • 大型电商网站开发成本大宗贸易平台
  • 做网站的素材哪里找的做网站看什么书好
  • 网站ui设计例子广州有什么好玩的
  • 地产项目网站wordpress 友情链接
  • 网站建设活动策划方案四川建设网官网登录
  • 拥有响应式网站项目网络图用什么软件
  • 织梦调用网站名称直播app
  • 访问网站提示输入用户名密码上海外贸新三样出口超2400亿元
  • 英文外贸网站源码郴州网站建设公司哪里有
  • wordpress企业网站主题用php做京东网站页面
  • 深圳建设局网站注册结构师培训附件北京通州区网站制作
  • 怎么查网站是哪个公司做的营商环境建设网站
  • h5网站制作网站开发wordpress替换主题数据库
  • 如何在百度能搜索到公司网站建行门户网站
  • 网站 wordpress 公众号三亚婚纱摄影 织梦网站源码
  • 安监局网站做模拟房屋建筑设计师哪里找
  • 怎么制作移动端网站郑州市网站建设
  • 自己的网站中商城怎么做贵阳网站商城建设
  • 做网站怎么租个空间设计网站项目描述
  • 网站程序优化自考本科需要什么条件