当前位置: 首页 > news >正文

做网站要学会那些成都最新消息今天

做网站要学会那些,成都最新消息今天,道外网站建设,自贡普通网站建设费用事先说明: 由于每次都要导入库和处理中文乱码问题,我都是在最前面先写好,后面的代码就不在写了。要是copy到自己本地的话,就要把下面的代码也copy下。 # 准备工作import pandas as pd import numpy as np from matplotlib impor…

事先说明:

由于每次都要导入库和处理中文乱码问题,我都是在最前面先写好,后面的代码就不在写了。要是copy到自己本地的话,就要把下面的代码也copy下。

# 准备工作import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlibmatplotlib.rc("font",family="FangSong")

First

需求:给定最流行的1000部电影的相关的数据,统计Rating和runtime的分布情况

分析

  • 毫无疑问,分布情况肯定是直方图
  • 把所有数据中是runtimeRating的列选出来
  • 求极差,设置组距
  • 设置/绘制直方图

代码

# 统计最流行1000部电影的Rating和runtime分布情况file_path = "./IMDB-Movie-Data.csv"df = pd.read_csv(file_path)
# print(df.head(1))
# print(df.info())#rating,runtime分布情况
#选择图形,直方图
#准备数据
runtime_data = df["Runtime (Minutes)"].values# 计算极差
max_runtime = runtime_data.max()
min_runtime = runtime_data.min()# 计算组数
# print(max_runtime-min_runtime)
num_runtime = int((max_runtime-min_runtime)//5)#设置图形的大小
plt.figure(figsize=(20,8),dpi=200)
plt.hist(runtime_data,num_runtime)_x = [min_runtime]
i = min_runtime
while i<=max_runtime+25:i = i+5_x.append(i)
plt.xticks(_x,rotation=45)
plt.title("时长runtime的分布直方图")plt.show()

# 准备数据 
Ratint_data = df["Rating"].valuesmax_Rating = Ratint_data.max()
min_Rating = Ratint_data.min()num_Rating = int((max_Rating-min_Rating)//0.5)plt.figure(figsize=(20,8),dpi=200)
plt.hist(Ratint_data,num_Rating)# 设置不等宽组距_
x=[1.9,3.5]
i=3.5
while i<max_Rating+0.5:i+=0.5_x.append(i)
plt.xticks(_x)
plt.title("评分Rating的分布直方图")plt.show()

效果


Second

需求:给定最流行的1000部电影的相关的数据,统计这些电影的类型

分析

  • 毫无疑问,连续数据的分布用条形图
  • 选出电影中类型的那一列数据
  • 用相关方法把其变成列表
  • 构造全零数组
  • 遍历每个电影。如果有该类型,则赋值为1,否则不变
  • 排序
  • 绘制条形图

代码

# 统计最流行1000部电影的类型# 准备数据
file_path="IMDB-Movie-Data.csv"df=pd.read_csv(file_path)
# print(df["Genre"].head())# 统计电影的类型
temp_list=df["Genre"].str.split(",").tolist()
# print(temp_list)
genre_list=list(set(i for j in temp_list for i in j))
# print(genre_list)# 构造全零的数组
zeros_df=pd.DataFrame(np.zeros((df.shape[0],len(genre_list))),columns=genre_list)
# print(zeros_df.head())# 给每个电影存在的类型赋值为1
for i in range(df.shape[0]):zeros_df.loc[i,temp_list[i]]=1
# print(zeros_df.head())# 统计每种类型的电影的和
genre_count=zeros_df.sum(axis=0)
# print(genre_count)# 排序
genre_count=genre_count.sort_values()
# print(genre_count)
_x=genre_count.index
_y=genre_count.values
# print(_x,_y)# 绘制条形图
plt.figure(figsize=(20,8),dpi=200)
plt.bar(range(len(_x)),_y)
plt.xticks(range(len(_x)),_x)
plt.xlabel("电影类型")
plt.ylabel("电影数量")
plt.title("最流行的1000部电影的分类")
plt.show()

效果

思考学习

  • 某一列是字符串类型,并且有多个值。我们可以通过此题学到一种解决办法(以后可以套用):
    • 用字符串方法进行切割
    • 转化成列表
    • 两层循环取出类型
# 通过字符串的方法,进行切割
temp_list=df["Genre"].str.split(",").tolist()# 套用两层循环,用set是去重
genre_list=list(set(i for j in temp_list for i in j))

  • 对于某一特征有多个属性,而我们要统计属性的数量。我们可以通过此题学到一种解决办法(以后可以套用):
    • 构造全零数组(维度根据实际情况来,一般情况下,0轴是样本数量,1轴是属性数量,列标签也是属包含所有属性),0表示没有这种属性
    • 遍历每个样本的该特征的所有属性,如果有,则将该位置的值变为1
    • 统计,求和
# 构造全零的数组
zeros_df=pd.DataFrame(np.zeros((df.shape[0],len(genre_list))),columns=genre_list)
# print(zeros_df.head())# 给每个电影存在的类型赋值为1
for i in range(df.shape[0]):zeros_df.loc[i,temp_list[i]]=1
# print(zeros_df.head())# 统计每种类型的电影的和
genre_count=zeros_df.sum(axis=0)
# print(genre_count)

Third

需求:给定Starbucks所有店铺的相关数据,求中美两国Starbucks的数量,绘制店铺总数前十的国家的图,绘制中国每个城市(省市)的店铺数量的图

分析

  1. 统计中美两国Starbucks的数量:
  • pandas自带的分组操作,按国家Country分类
  • 用聚合count方法
  • 选出中美两国
  1. 绘制店铺总数前十的国家的图:
  • 根据第一问的数据,进行排序
  • 绘制图形
  1. 绘制图形呈现中国每个城市的店铺数量:
  • 找出中国的数据
  • pandas自带的分组操作,按省市State/Province分类
  • 用聚合count方法
  • 绘制图形

代码

# 统计中美两国Starbucks的数量# 准备数据
file_path="starbucks_store_worldwide.csv"
df=pd.read_csv(file_path)
# print(df.head())# 根据国家分组
country_data=df.groupby(by="Country")
# print(country_data)
# for country,values in country_data:
#     print(country)
#     print(values)# 测试,看country_data统计出来的是什么数据
# t=country_data["Ownership Type"]
# t=country_data["Brand"]
# print(t)
# for i in t:
#     print(i)# 调用聚合方法,得到答案
# country_count=country_data["Ownership Type"].count().sort_values()
country_count=country_data["Brand"].count().sort_values()
# print(country_count)
print("美国Starbucks数量:"+str(country_count["US"]))
print("中国Starbucks数量:"+str(country_count["CN"]))

# 绘制店铺总数前十的国家的图country_max=country_count[-10:]
# print(country_max)
_x=country_max.index
_y=country_max.values
# print(_x)
# print(_y)plt.figure(figsize=(20,8),dpi=200)
plt.bar(range(len(_x)),_y)
plt.xticks(range(len(_x)),_x)
plt.title("starbucks店铺总数前十的国家")
plt.show()

# 绘制图形呈现中国每个城市的店铺数量china_data=df[df["Country"]=="CN"]
# print(china_data)china_province=china_data.groupby(by="State/Province")
# for province,values in china_province:
#     if(int(province)==31):
#         print(province)
#         print(values)china_province=china_province["Brand"].count().sort_values()
# print(china_province)_x=china_province.index
_y=china_province.valuesplt.figure(figsize=(20,8),dpi=200)
plt.bar(range(len(_x)),_y)
plt.xticks(range(len(_x)),_x)
plt.title("中国每个城市的店铺数量")
plt.show()

效果



思考学习

  • 学会使用pandas自带的分组操作,注意操作之后得到的迭代器(应该是迭代器,毕竟不能直接看数据,但是支持遍历等操作)
  • 对于上一步得到的迭代器,使用聚合count可以直接统计出各个组内的数据数量

Fourth

需求:给出全球排名前10000本书相关数据,统计不同年份的书籍数量,不同年份的书籍的平均评分情况

分析

相信经过前面三个案例的练习,这个案例应该可以轻松解决👀。所以,我就偷个懒,不写分析了😝

代码

# 不同年份书籍的数量file_path="books.csv"df=pd.read_csv(file_path)
year_data=df[pd.notnull(df["original_publication_year"])].groupby(by="original_publication_year").count()["id"]
# year_data=df.groupby(by="original_publication_year").count()["id"]
print(year_data)

# 不同年份的书籍平均评分rating_data=df[pd.notnull(df["original_publication_year"])]
rating_mean=rating_data["average_rating"].groupby(by=rating_data["original_publication_year"]).mean()_x=rating_mean.index
_y=rating_mean.valuesplt.figure(figsize=(20,8),dpi=200)
plt.plot(range(len(_x)),_y)
plt.xticks(list(range(len(_x)))[::5],_x[::5].astype(int),rotation=45)
plt.title("不同年份的书籍平均评分")
plt.show()

效果


http://www.yayakq.cn/news/629247/

相关文章:

  • 免费网站怎么注册卖网站模板
  • 网站有什么好处苏州专业网站建设设计公司
  • 网站开发学习流程石家庄软件开发公司有几家
  • 火车头采集器网站被kwordpress 描述设为标题
  • 网站建设合同免费下载如何知道一个网站用什么建设的
  • 天津网站建设吐鲁番地区企业内部网站开发
  • 网页小游戏有哪些页面优化算法
  • 查找使用wordpress的网站免费外贸建站平台
  • 做网站容易找工作吗定制营销的优缺点
  • 洛阳做家教去什么网站中国苏州网站
  • 网站专题制作流程网站301跳跳转
  • 广东企业网站备案网站集约化建设标准
  • 网站建设图片尺寸淘宝店铺推广
  • 津南天津网站建设设计公司有哪些部门
  • 做网站如何更新百度快照wordpress添加下载页
  • 网站多个用户怎样建设耳机商城网站开发
  • 商城网站怎样做应用商店下载安装2023最新版
  • 做网站需要api吗wordpress 封面图片
  • 中国网站备案取消东莞推广网站排名
  • 同ip网站过多是空间的原因还是域名的原因如何申请域名建网站
  • 建设网站硬件网站建设与运营的实训总结
  • 服务类型的网站怎么做高埗做网站
  • 外贸产品网站建设成都网站建设 工作室
  • 广西水利工程建设管理网站新民网站建设价格咨询
  • 学做软件的网站有哪些内容哪里有建设公司官网
  • 网站建设与设计方案中国住房城乡建设部网站
  • 女人与马做受网站怎么做网站免费的
  • 平台式网站模板下载怎么做网站关键词搜索
  • 一个好网站设计图标添加在wordpress
  • 遵义做网站推广惠州做公司网站