当前位置: 首页 > news >正文

网站只显示一个网址装潢设计师工资一般多少

网站只显示一个网址,装潢设计师工资一般多少,品牌策划方案怎么写,不锈钢网站建设哪家好文章目录 1. Checkpoint的整体设计2. Checkpoint创建源码解析2.1. DefaultExecutionGraphBuilder.buildGraph2.2. ExecutionGraph.enableCheckpointing 由于系统原因导致Flink作业无法正常运行的情况非常多,且很多时候都是无法避免的。对于Flink集群来讲&#xff0c…

文章目录

  • 1. Checkpoint的整体设计
  • 2. Checkpoint创建源码解析
    • 2.1. DefaultExecutionGraphBuilder.buildGraph
    • 2.2. ExecutionGraph.enableCheckpointing

由于系统原因导致Flink作业无法正常运行的情况非常多,且很多时候都是无法避免的。对于Flink集群来讲,能够快速从异常状态中恢复,同时保证处理数据的正确性和一致性非常重要。Flink主要借助Checkpoint的方式保障整个系统状态数据的一致性,也就是基于ABS算法实现轻量级快照服务。

本节我们详细了解Checkpoint的设计与实现。

 

1. Checkpoint的整体设计

Checkpoint的执行过程分为三个阶段:启动、执行以及确认完成。其中Checkpoint的启动过程由JobManager管理节点中的CheckpointCoordinator组件控制,该组件会周期性地向数据源节点发送执行Checkpoint的请求,执行频率取决于用户配置的CheckpointInterval参数。

执行过程:

  1. 在JobManager管理节点通过CheckpointCoordinator组件向每个数据源节点发送Checkpoint执行请求,此时数据源节点中的算子会将消费数据对应的Position发送到JobManager管理节点中。
  2. JobManager节点会存储Checkpoint元数据,用于记录每次执行Checkpoint操作过程中算子的元数据信息,例如在FlinkKafkaConsumer中会记录消费Kafka主题的偏移量,用于确认从Kafka主题中读取数据的位置。
  3. 在数据源节点执行完Checkpoint操作后,继续向下游节点发送CheckpointBarrier事件,下游算子通过对齐Barrier事件,触发该算子的Checkpoint操作。
    当下游的map算子接收到数据源节点的Checkpoint
    Barrier事件后,首先对当前算子的数据进行处理,并等待其他上游数据源节点的Barrier事件到达。该过程就是Checkpoint
    Barrier对齐,目的是确保属于同一Checkpoint的数据能够全部到达当前节点。

在这里插入图片描述

Barrier事件的作用就是切分不同Checkpoint批次的数据。

  • 当map算子接收到所有上游的Barrier事件后,就会触发当前算子的Checkpoint操作,并将状态数据快照到指定的外部持久化介质中,该操作主要借助状态后端存储实现。

  • 当状态数据执行完毕后,继续将Barrier事件发送至下游的算子,进行后续算子的Checkpoint操作。

  • 另外,在map算子中执行完Checkpoint操作后,也会向JobManager管理节点发送Ack消息,确认当前算子的Checkpoint操作正常执行。此时Checkpoint数据会存储该算子对应的状态数据,如果StateBackend为MemoryStateBackend,则主要会将状态数据存储在JobManager的堆内存中

sink节点的ack

像map算子节点一样,当Barrier事件到达sink类型的节点后,sink节点也会进行Barrier对齐操作,确认上游节点的数据全部接入。然后对接入的数据进行处理,将结果输出到外部系统中。完成以上步骤后,sink节点会向JobManager管理节点发送Ack确认消息,确认当前Checkpoint中的状态数据都正常进行了持久化操作。(之后呢?当任务结束之后,cp会消失还是?)

 

2. Checkpoint创建源码解析

通过调用StreamExecutionEnvironment.enableCheckpointing(),开启Checkpoint。
此时Checkpoint的配置会被存储在StreamGraph中,然后将StreamGraph中的CheckpointConfig转换为JobCheckpointingSettings数据结构存储在JobGraph对象中,并伴随JobGraph提交到集群运行。启动JobMaster服务后,JobMaster调度和执行Checkpoint操作。

2.1. DefaultExecutionGraphBuilder.buildGraph

如下代码,通过JobGraph构建ExecutionGraph的过程中,获取JobGraph中存储的JobCheckpointingSettings配置,然后创建ExecutionGraph。

1)根据snapshotSettings配置获取triggerVertices、ackVertices以及confirmVertices节点集合,并转换为对应的ExecutionJobVertex集合。

  • 其中triggerVertices集合存储了所有SourceOperator节点,这些节点通过CheckpointCoordinator主动触发Checkpoint操作。
  • ackVertices和confirmVertices集合存储了StreamGraph中的全部节点,代表所有节点都需要返回Ack确认信息并确认Checkpoint执行成功。

2)创建CompletedCheckpointStore组件,用于存储Checkpoint过程中的元数据。

  • 当对作业进行恢复操作时会在CompletedCheckpointStore中检索最新完成的Checkpoint元数据信息,然后基于元数据信息恢复Checkpoint中存储的状态数据。CompletedCheckpointStore有两种实现,分别为StandaloneCompletedCheckpointStore和ZooKeeperCompletedCheckpointStore。
  • 在CompletedCheckpointStore中通过maxNumberOfCheckpointsToRetain参数配置以及结合checkpointIdCounter计数器保证只会存储固定数量的CompletedCheckpoint。

3)创建CheckpointStatsTracker实例
用于监控和追踪Checkpoint执行和更新的情况,包括Checkpoint执行的统计信息以及执行状况,WebUI中显示的Checkpoint监控数据主要来自CheckpointStatsTracker。

4)创建StateBackend,从UserClassLoader中反序列化出应用指定的StateBackend并设定为applicationConfiguredBackend。

5)初始化用户自定义的Checkpoint Hook函数

6)最终调用executionGraph.enableCheckpointing()方法,在作业的执行和调度过程中开启Checkpoint。

// 配置状态数据checkpointing
// 从jobGraph中获取JobCheckpointingSettings
JobCheckpointingSettings snapshotSettings = jobGraph.getCheckpointingSettings();
//如果snapshotSettings不为空,则开启checkpoint功能
if (snapshotSettings != null) {List<ExecutionJobVertex> triggerVertices =idToVertex(snapshotSettings.getVerticesToTrigger(), executionGraph);List<ExecutionJobVertex> ackVertices =idToVertex(snapshotSettings.getVerticesToAcknowledge(), executionGraph);List<ExecutionJobVertex> confirmVertices =idToVertex(snapshotSettings.getVerticesToConfirm(), executionGraph);//创建CompletedCheckpointStoreCompletedCheckpointStore completedCheckpoints;CheckpointIDCounter checkpointIdCounter;try {int maxNumberOfCheckpointsToRetain = jobManagerConfig.getInteger(CheckpointingOptions.MAX_RETAINED_CHECKPOINTS);if (maxNumberOfCheckpointsToRetain <= 0) {maxNumberOfCheckpointsToRetain = CheckpointingOptions.MAX_RETAINED_CHECKPOINTS.defaultValue();}// 通过recoveryFactory创建CheckpointStorecompletedCheckpoints = recoveryFactory.createCheckpointStore(jobId, maxNumberOfCheckpointsToRetain, classLoader);   // 通过recoveryFactory创建CheckpointIDCountercheckpointIdCounter = recoveryFactory.createCheckpointIDCounter(jobId);}catch (Exception e) {throw new JobExecutionException(jobId, "Failed to initialize high-availability checkpoint handler", e);}// 获取checkpoints最长的记录次数int historySize = jobManagerConfig.getInteger(WebOptions.CHECKPOINTS_HISTORY_SIZE);// 创建CheckpointStatsTracker实例CheckpointStatsTracker checkpointStatsTracker = new CheckpointStatsTracker(historySize,ackVertices,snapshotSettings.getCheckpointCoordinatorConfiguration(),metrics);// 从application中获取StateBackendfinal StateBackend applicationConfiguredBackend;final SerializedValue<StateBackend> serializedAppConfigured = snapshotSettings.getDefaultStateBackend();if (serializedAppConfigured == null) {applicationConfiguredBackend = null;}else {try {applicationConfiguredBackend = serializedAppConfigured.deserializeValue(classLoader);} catch (IOException | ClassNotFoundException e) {throw new JobExecutionException(jobId,"Could not deserialize application-defined state backend.", e);}}// 获取最终的rootBackendfinal StateBackend rootBackend;try {rootBackend = StateBackendLoader.fromApplicationOrConfigOrDefault(applicationConfiguredBackend, jobManagerConfig, classLoader, log);}catch (IllegalConfigurationException | IOException | DynamicCodeLoadingException e) {throw new JobExecutionException(jobId, "Could not instantiate configured state backend", e);}// 初始化用户自定义的checkpoint Hooks函数final SerializedValue<MasterTriggerRestoreHook.Factory[]> serializedHooks = snapshotSettings.getMasterHooks();final List<MasterTriggerRestoreHook<?>> hooks;// 如果serializedHooks为空,则hooks为空if (serializedHooks == null) {hooks = Collections.emptyList();}else {// 加载MasterTriggerRestoreHookfinal MasterTriggerRestoreHook.Factory[] hookFactories;try {hookFactories = serializedHooks.deserializeValue(classLoader);}catch (IOException | ClassNotFoundException e) {throw new JobExecutionException(jobId, "Could not instantiate user-defined checkpoint hooks", e);}// 设定ClassLoader为UserClassLoaderfinal Thread thread = Thread.currentThread();final ClassLoader originalClassLoader = thread.getContextClassLoader();thread.setContextClassLoader(classLoader);// 创建hooks函数try {hooks = new ArrayList<>(hookFactories.length);for (MasterTriggerRestoreHook.Factory factory : hookFactories) {hooks.add(MasterHooks.wrapHook(factory.create(), classLoader));}}// 将thread的ContextClassLoader设定为originalClassLoaderfinally {thread.setContextClassLoader(originalClassLoader);}}// 获取CheckpointCoordinatorConfigurationfinal CheckpointCoordinatorConfiguration chkConfig = snapshotSettings.getCheckpointCoordinatorConfiguration();// 开启executionGraph中的Checkpoint功能executionGraph.enableCheckpointing(chkConfig,triggerVertices,ackVertices,confirmVertices,hooks,checkpointIdCounter,completedCheckpoints,rootBackend,checkpointStatsTracker);
}

 

2.2. ExecutionGraph.enableCheckpointing

继续看ExecutionGraph.enableCheckpointing()方法的实现,包含如下逻辑。

  1. 将tasksToTrigger、tasksToWaitFor以及tasksToCommitTo三个ExecutionJobVertex集合转换为ExecutionVertex[]数组,每个ExecutionVertex代表ExecutionJobVertex中的一个SubTask节点。
  2. 容错管理:创建CheckpointFailureManager,用于Checkpoint执行过程中的容错管理,包含failJob和failJobDueToTaskFailure两个处理方法。
  3. 定时调度和执行:创建checkpointCoordinatorTimer,用于Checkpoint异步线程的定时调度和执行
  4. 协调和管理作业中的Checkpoint:创建CheckpointCoordinator组件,通过CheckpointCoordinator协调和管理作业中的Checkpoint,同时收集各Task节点中Checkpoint的执行状况等信息。
  5. Hook:将Master Hook注册到CheckpointCoordinator中,实现用户自定义Hook代码的调用。
  6. 控制CheckpointCoordinator的启停:将JobStatusListener的实现类CheckpointCoordinatorDeActivator注册到JobManager中,此时系统会根据作业的运行状态控制CheckpointCoordinator的启停,当作业的状态为Running时会触发启动CheckpointCoordinator组件。
public void enableCheckpointing(CheckpointCoordinatorConfiguration chkConfig,List<ExecutionJobVertex> verticesToTrigger,List<ExecutionJobVertex> verticesToWaitFor,List<ExecutionJobVertex> verticesToCommitTo,List<MasterTriggerRestoreHook<?>> masterHooks,CheckpointIDCounter checkpointIDCounter,CompletedCheckpointStore checkpointStore,StateBackend checkpointStateBackend,CheckpointStatsTracker statsTracker) {checkState(state == JobStatus.CREATED, "Job must be in CREATED state");checkState(checkpointCoordinator == null, "checkpointing already enabled");ExecutionVertex[] tasksToTrigger = collectExecutionVertices(verticesToTrigger);ExecutionVertex[] tasksToWaitFor = collectExecutionVertices(verticesToWaitFor);ExecutionVertex[] tasksToCommitTo = collectExecutionVertices(verticesToCommitTo);checkpointStatsTracker = checkNotNull(statsTracker, "CheckpointStatsTracker");// 创建CheckpointFailureManagerCheckpointFailureManager failureManager = new CheckpointFailureManager(chkConfig.getTolerableCheckpointFailureNumber(),new CheckpointFailureManager.FailJobCallback() {@Overridepublic void failJob(Throwable cause) {getJobMasterMainThreadExecutor().execute(() -> failGlobal(cause));}@Overridepublic void failJobDueToTaskFailure(Throwable cause, ExecutionAttemptID failingTask) {getJobMasterMainThreadExecutor().execute(()  -> failGlobalIfExecutionIsStillRunning(cause, failingTask));}});// 创建checkpointCoordinatorTimercheckState(checkpointCoordinatorTimer == null);checkpointCoordinatorTimer = Executors.newSingleThreadScheduledExecutor(new DispatcherThreadFactory(Thread.currentThread().getThreadGroup(), "Checkpoint Timer"));// 创建checkpointCoordinatorcheckpointCoordinator = new CheckpointCoordinator(jobInformation.getJobId(),chkConfig,tasksToTrigger,tasksToWaitFor,tasksToCommitTo,checkpointIDCounter,checkpointStore,checkpointStateBackend,ioExecutor,new ScheduledExecutorServiceAdapter(checkpointCoordinatorTimer),SharedStateRegistry.DEFAULT_FACTORY,failureManager);// 向checkpoint Coordinator中注册master Hooksfor (MasterTriggerRestoreHook<?> hook : masterHooks) {if (!checkpointCoordinator.addMasterHook(hook)) {LOG.warn("Trying to register multiple checkpoint hooks with the name: {}",hook.getIdentifier());}}//向checkpointCoordinator中设定checkpointStatsTrackercheckpointCoordinator.setCheckpointStatsTracker(checkpointStatsTracker);// 注册JobStatusListener,用于自动启动CheckpointCoordinatorif (chkConfig.getCheckpointInterval() != Long.MAX_VALUE) {registerJobStatusListener(checkpointCoordinator.createActivatorDeactivator());}this.stateBackendName = checkpointStateBackend.getClass().getSimpleName();
}

 

参考:《Flink设计与实现:核心原理与源码解析》–张利兵

http://www.yayakq.cn/news/858347/

相关文章:

  • 涉县网站建设北京远程时代网站建设
  • 门户网站建设投资哪个手游平台折扣最低又安全
  • 网站建设软件哪个最好推广竞价
  • 网站建设技术包括哪些网站做百科
  • 长春门户网站建设二建注册查询系统
  • 制作网站要找什么公司株洲芦淞区
  • 自建网站百度专业3合1网站建设价格
  • 校园网站建设平台在线设计平台的消费者分析
  • 网站推广策划包含哪些内容厦门网站建设网络推广
  • 公司展厅设计公司哪家好一点aso优化前景
  • 苏州做网站哪家公司好在线赚钱平台
  • 番禺网站 优化网站代备案需要多少钱
  • 建设网站后怎么发布毕设做桌面端还是网站
  • 做jsp网站用哪些软件安徽网站开发公司
  • 网站建设如何自学百度经验官方网站登录入口
  • 做网站的代码有哪些17网站一起做网店 新塘
  • 站长要维护网站html5 爱情网站模板
  • 网站建设和架构株洲网红打卡地
  • 新乡市网站建设有哪些公司推广普通话手抄报内容
  • 建设银行对公网站打不开北京网站制作开发公司
  • 网站做二维码吗免费天眼查公司查询
  • 有后天管理的网站怎么建设wordpress 商业授权
  • 网站seo优化公司深圳办公室设计
  • 杭州做网站哪里好phpcms 笑话网站
  • 推广网站要注意什么网站建设都需要哪些书
  • 网站建设功能定位怎么写安徽工程建设信息网实名制查询
  • 大同百度做网站多少钱wordpress 体验
  • 宁波网站建设团队北京旧房翻新装修公司排名
  • 网站地址推荐郑州软件开发工资
  • 建设网站需要哪些条件深圳网站制作哪家好薇