当前位置: 首页 > news >正文

ict网站建设环保网页设计代码

ict网站建设,环保网页设计代码,计算机类哪个专业最吃香,手机网站淘宝客怎么做SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测 目录 SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 1.【SCI一区级】Matlab实…

SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测

目录

    • SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.【SCI一区级】Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
3…data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
4.输出指标包括优化参数、精确度、召回率、精确率、F1分数。
数据集格式:
格拉姆角场(Gram Angle Field)和双通道PCNN(Pulse Coupled Neural Network)融合注意力机制是一种用于多特征分类预测的模型。下面我将逐步解释这个模型的各个组成部分:

格拉姆角场:格拉姆角场是一种用于描述特征之间关系的表示方法。在该模型中,特征被转化为格拉姆矩阵,然后通过计算格拉姆矩阵之间的角度,得到格拉姆角场。格拉姆角场可以捕捉特征之间的相关性和相互作用,用于提取更丰富的特征表示。

双通道PCNN:PCNN是一种神经网络模型,模拟了生物神经元之间的脉冲耦合行为。在该模型中,使用两个通道处理输入数据。一个通道用于提取空间特征,另一个通道用于提取时间特征。通过融合这两个通道的特征表示,可以更好地捕捉数据的时空信息。

注意力机制:注意力机制在多特征分类预测中起到关键作用。它可以学习数据中不同特征的重要性权重,以便更有效地融合多个特征表示。注意力机制可以使模型自动关注对分类任务更有贡献的特征,并降低对无关或冗余特征的依赖。

多特征分类预测:在得到融合后的特征表示之后,通常会使用分类器(如全连接层)进行最终的分类预测。分类器可以将模型的输出映射为表示不同类别概率的向量,从而进行分类预测。

综上所述,格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测模型结合了格拉姆角场、双通道PCNN和注意力机制的概念。通过这种方式,模型可以更好地利用多个特征的信息,并关注对分类任务更具意义的特征。这种模型在多特征分类问题中可能具有较好的性能。
在这里插入图片描述
注:程序和数据放在一个文件夹

模型描述

在这里插入图片描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng(0)                  % 使训练集、和测试集的随机划分与适应度函数一致%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
Numfeatures = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.yayakq.cn/news/271009/

相关文章:

  • 网站加载模式微课网站建设项目
  • O2O网站建设需要多少钱做网站都需要什么人团
  • 无人高清影视在线观看广州排名网站关键词优化
  • 网站备案 人工审核网络建设合同范本
  • 做网站平台的公司有哪些谁用腾讯风铃做网站的
  • 成都网站建设平台湖北网站建设软件有哪些
  • 深圳横岗做网站建行网站会员是什么
  • 网站建站北京怎么做网页长图
  • 成都网站设计制作湛江网站建设公司哪家好
  • 网站怎么做自然优化网站机房建设解决方案
  • 门户网站建设的背景和意义什么东西可以做网站
  • vps lnmp wordpress聊城seo整站优化报价
  • 石家庄网站建设雨点牛网站网络营销平台
  • 汉邦未来网站开发有限公司佛山网站建设定制开发
  • 企业网站跟微信支付怎么做做全屏网站设计时容易犯的错
  • 广州网站建设建航ipv6网络设计案例
  • 电子商务网站建设期末试题wordpress divi教程
  • 什么是营销型手机网站建设安平做网站做推广电话
  • 湖州民生建设有限公司网站铜川做网站电话
  • 网站要不要备案优秀网页界面设计
  • 受和攻不停的做漫画网站公众号的微网站怎么做的
  • 网站的管理有是公司建立网站的作用有
  • 企业网站托管的方案建设银行兴安支行网站
  • 常州市网站建设设计南沙手机网站建设
  • 阿里巴巴电子商务网站可口可乐广告策划书范文
  • 奢侈品电商网站首页设计网站安全建设工作总结
  • 校园招生网站建设的简报wordpress管理员密码丢失
  • 网站后台管理模板html内网网站建设工作会议
  • 网站投注建设活动推广软文范例
  • 网站建设 jswordpress收费主题免费下载