当前位置: 首页 > news >正文

做网站搞个物理服务器开发商不给办房产证怎么办

做网站搞个物理服务器,开发商不给办房产证怎么办,wordpress连接本地数据库,网络规划设计师考试全程指导(第2版) pdf比较(二)利用python绘制雷达图 雷达图(Radar Chart)简介 雷达图可以用来比较多个定量变量,也可以用于查看数据集中变量的得分高低,是显示性能表现的理想之选。缺点是变量过多容易造成阅读困难。 快速绘制…

比较(二)利用python绘制雷达图

雷达图(Radar Chart)简介

1

雷达图可以用来比较多个定量变量,也可以用于查看数据集中变量的得分高低,是显示性能表现的理想之选。缺点是变量过多容易造成阅读困难。

快速绘制

  1. 基于matplotlib

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 计算变量个数
    categories=list(df)[1:]
    N = len(categories)# 仅绘制第一行数据的雷达图
    values = df.loc[0].drop('group').values.flatten().tolist() # 获取第一行数据,剔除group
    values += values[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 计算每个轴的角度
    angles = [n / float(N) * 2 * pi for n in range(N)] # 每个变量的角度位置
    angles += angles[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 初始化布局
    ax = plt.subplot(111, polar=True)# 将每个变量绘制在极坐标上
    plt.xticks(angles[:-1], categories, color='grey', size=8)# y标签
    ax.set_rlabel_position(0)
    plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
    plt.ylim(0,40)# 绘制数据
    ax.plot(angles, values, linewidth=1, linestyle='solid')# 填充区域颜色
    ax.fill(angles, values, 'b', alpha=0.1)plt.show()
    

    2

定制多样化的雷达图

自定义雷达图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

  1. 一图绘制多个雷达图

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 计算变量个数
    categories=list(df)[1:]
    N = len(categories)# 仅绘制第一行数据的雷达图
    values = df.loc[0].drop('group').values.flatten().tolist() # 获取第一行数据,剔除group
    values += values[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 计算每个轴的角度
    angles = [n / float(N) * 2 * pi for n in range(N)] # 每个变量的角度位置
    angles += angles[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 初始化布局
    ax = plt.subplot(111, polar=True)# 偏移-将第一个轴位于顶部
    ax.set_theta_offset(pi / 2)
    ax.set_theta_direction(-1)# 将每个变量绘制在极坐标上
    plt.xticks(angles[:-1], categories)# y标签
    ax.set_rlabel_position(0)
    plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
    plt.ylim(0,40)# 添加多个极坐标图
    # 绘制第一个图
    values = df.loc[0].drop('group').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, linewidth=1, linestyle='solid', label="group A")
    ax.fill(angles, values, 'b', alpha=0.1)# 绘制第二个图
    values = df.loc[1].drop('group').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, linewidth=1, linestyle='solid', label="group B")
    ax.fill(angles, values, 'r', alpha=0.1)# 图例
    plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))plt.show()
    

    3

  2. 分组雷达图

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 自定义函数-每一行绘制一个雷达图
    def make_spider( row, title, color):# 计算变量个数categories=list(df)[1:]N = len(categories)# 计算角度angles = [n / float(N) * 2 * pi for n in range(N)]angles += angles[:1]# 初始化布局ax = plt.subplot(2,2,row+1, polar=True, )# 偏移至顶部ax.set_theta_offset(pi / 2)ax.set_theta_direction(-1)# x标签plt.xticks(angles[:-1], categories, color='grey', size=8)# y标签ax.set_rlabel_position(0)plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)plt.ylim(0,40)# 极坐标图values = df.loc[row].drop('group').values.flatten().tolist()values += values[:1]ax.plot(angles, values, color=color, linewidth=2, linestyle='solid')ax.fill(angles, values, color=color, alpha=0.4)# 标题plt.title(title, size=11, color=color, y=1.1)# 图标参数
    my_dpi=96
    plt.figure(figsize=(1000/my_dpi, 1000/my_dpi), dpi=my_dpi)# 调色板
    my_palette = plt.cm.get_cmap("Set2", len(df.index))# 绘制多个图
    for row in range(0, len(df.index)):make_spider( row=row, title='group '+df['group'][row], color=my_palette(row))
    

    4

总结

以上通过matplotlib结合极坐标绘制雷达图,并通过其他绘图知识自定义各种各样的雷达图来适应相关使用场景。

共勉~

http://www.yayakq.cn/news/736414/

相关文章:

  • 开一个网站建设公司需要什么软件外贸网站建设原则
  • 长春网站选网诚传媒做网站的需求调研
  • 网站开发人员绩效如何计算策划营销
  • 海口网站建设推广dedecms网站tag标签静态化
  • 莱芜中考网站设计模板怎么设置
  • 外贸网站免费建设ui设计与制作
  • 游戏网站app怎么建立一个公司的网站
  • 泰州做企业网站cms监控手机客户端
  • 北京网站备案号wordpress是开源的吗
  • 有关大数据的网站及网址wordpress知更鸟主题
  • 茂名seo站内优化wordpress增加变量
  • 数据库网站 建设方案开发app需要多少钱?
  • php网站建设哪家好律师个人网站模板
  • 网站seo模块做外贸做的很好的网站
  • app网站制作下载柳州做网站seo哪家好
  • 软件开发与网站建设e福州怎么交医保
  • 公司网站备案需要每年做吗十大招商平台
  • 重庆官方网站有哪些番禺建设局网站首页
  • 看优秀摄影做品的网站做摄影和后期的兼职网站
  • 企业网站软件开发网站标题 关键词 描述之间的关系
  • 深圳网站建设外贸公司排版设计技巧
  • 厦门网站制作专业wordpress菜单怎么设置目录册
  • 做网站搭建服务器要多少钱云服务器可以做视频网站吗
  • 网站开发实训感想wordpress互动主题
  • 江西数据平台网站建设牡丹江最新信息网0453
  • 海南医院网站建设网站开发面试自我介绍
  • 网站批量上传文章网站首页跳出弹窗
  • 免费建站建设网站网站备案主体注销
  • 昆明网站建设天猫运营偃师网络营销的概念
  • 一个网站通常包含多个网页网站被黑 禁止js跳转