当前位置: 首页 > news >正文

福建建设厅网站免费制作动画的app

福建建设厅网站,免费制作动画的app,网站做不了301重定向,网课营销方案统计固定时间内两条流数据的匹配情况,需要自定义来实现——可以用窗口(window)来表示。为了更方便地实现基于时间的合流操作,Flink 的 DataStrema API 提供了内置的 join 算子。 窗口联结(Window Join) 一…

统计固定时间内两条流数据的匹配情况,需要自定义来实现——可以用窗口(window)来表示。为了更方便地实现基于时间的合流操作,Flink 的 DataStrema API 提供了内置的 join 算子。

窗口联结(Window Join)

一段时间的双流合并

定义时间窗口,并将两条流中共享一个公共键(key)的数据放在窗口中进行配对处理。

stream1.join(stream2).where(<KeySelector>) // stream1 的 keyBy.equalTo(<KeySelector>) // stream2 的 keyBy.window(<WindowAssigner>).apply(<JoinFunction>)
public class WindowJoinDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);SingleOutputStreamOperator<Tuple2<String, Integer>> ds1 = env.fromElements(Tuple2.of("a", 1),Tuple2.of("a", 2),Tuple2.of("b", 3),Tuple2.of("c", 4)).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String,Integer>>forMonotonousTimestamps().withTimestampAssigner((value, ts) -> value.f1 * 1000L));SingleOutputStreamOperator<Tuple3<String, Integer, Integer>> ds2 = env.fromElements(Tuple3.of("a", 1, 1),Tuple3.of("a", 11, 1),Tuple3.of("b", 2, 1),Tuple3.of("b", 12, 1),Tuple3.of("c", 14, 1),Tuple3.of("d", 15, 1)).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String,Integer, Integer>>forMonotonousTimestamps().withTimestampAssigner((value, ts) -> value.f1 * 1000L));DataStream<String> join = ds1.join(ds2).where(r1 -> r1.f0) // ds1 的keyby.equalTo(r2 -> r2.f0) // ds2 的keyby.window(TumblingEventTimeWindows.of(Time.seconds(10))).apply(new JoinFunction<Tuple2<String, Integer>, Tuple3<String, Integer, Integer>, String>() {/*** 关联上的数据,调用 join 方法* @param first ds1 的数据* @param second ds2 的数据*/@Overridepublic String join(Tuple2<String, Integer> first, Tuple3<String, Integer, Integer> second) throws Exception {return first + "<----->" + second;}});join.print();env.execute();}
}

输出:

image-20231112153403293

window join:

  1. 两条流落在同一个时间窗口范围内才能匹配
  2. 根据 keyBy 的 key,来进行匹配关联
  3. 只能拿到匹配上的数据,类似有固定时间范围的inner join

间隔联结(Interval Join)

存在如下场景:两条流匹配的两个数据有可能刚好“卡在”窗口边缘两侧,窗口内就都没有匹配了,可以使用“间隔联结”(interval join)来解决。

原理

给定两个时间点,分别叫作间隔的“上界”(upperBound)“下界”(lowerBound);可以开辟一段时间间隔:[a.timestamp + lowerBound, a.timestamp +upperBound], 即以 a 的时间戳为中心,下至下界点、上至上界点的一个闭区间:这段时间作为可以匹配另一条流数据的“窗口”范围。

匹配的条件为:

a.timestamp + lowerBound <= b.timestamp <= a.timestamp + upperBound

image-20231112154002415

stream1
.keyBy(<KeySelector>)// KeyedStream 调用   
.intervalJoin(stream2.keyBy(<KeySelector>))
.between(Time.milliseconds(-2), Time.milliseconds(1)).process (new ProcessJoinFunction<Integer, Integer, String(){@Overridepublic void processElement(Integer left, Integer right,Context ctx, Collector<String> out){out.collect(left + "," + right);}
});

处理迟到数据,可以使用左右侧输出流

完整代码:

public class IntervalJoinWithLateDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);SingleOutputStreamOperator<Tuple2<String, Integer>> ds1 = env.socketTextStream("hadoop102", 7777).map((MapFunction<String, Tuple2<String, Integer>>) value -> {String[] datas = value.split(",");return Tuple2.of(datas[0], Integer.valueOf(datas[1]));}).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String,Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(3)).withTimestampAssigner((value, ts) -> value.f1 * 1000L));SingleOutputStreamOperator<Tuple3<String, Integer, Integer>> ds2 = env.socketTextStream("hadoop102", 8888).map((MapFunction<String, Tuple3<String, Integer, Integer>>) value -> {String[] datas = value.split(",");return Tuple3.of(datas[0], Integer.valueOf(datas[1]), Integer.valueOf(datas[2]));}).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String, Integer, Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(3)).withTimestampAssigner((value, ts) -> value.f1 * 1000L));/*** 【Interval join】* 1、只支持事件时间* 2、指定上界、下界的偏移,负号代表时间往前,正号代表时间往后* 3、process 中,只能处理 join 上的数据* 4、两条流关联后的 watermark,以两条流中最小的为准* 5、如果 当前数据的事件时间 < 当前的 watermark,就是迟到数据,主流的 process 不处理* => between 后,可以指定将 左流 或 右流的迟到数据放入侧输出流* *///1. 分别做 keyby,key 其实就是关联条件KeyedStream<Tuple2<String, Integer>, String> ks1 = ds1.keyBy(r1 -> r1.f0);KeyedStream<Tuple3<String, Integer, Integer>, String> ks2 = ds2.keyBy(r2 -> r2.f0);//2. 调用 interval join// 左右测输出流迟到标签OutputTag<Tuple2<String, Integer>> ks1LateTag = new OutputTag<>("ks1-late", Types.TUPLE(Types.STRING, Types.INT));OutputTag<Tuple3<String, Integer, Integer>> ks2LateTag = new OutputTag<>("ks2-late", Types.TUPLE(Types.STRING, Types.INT, Types.INT));SingleOutputStreamOperator<String> process = ks1.intervalJoin(ks2).between(Time.seconds(-2), Time.seconds(2)) // 指定上下界.sideOutputLeftLateData(ks1LateTag) // 将ks1的迟到数据,放入侧输出流.sideOutputRightLateData(ks2LateTag) // 将ks2的迟到数据,放入侧输出流.process(new ProcessJoinFunction<Tuple2<String, Integer>, Tuple3<String, Integer, Integer>, String>() {/*** 两条流的数据匹配上,才会调用这个方法* @param left ks1 的数据* @param right ks2 的数据* @param ctx 上下文* @param out 采集器*/@Overridepublic void processElement(Tuple2<String, Integer> left, Tuple3<String, Integer, Integer> right, Context ctx, Collector<String> out) throws Exception {// 进入这个方法,是关联上的数据out.collect(left + "<------>" + right);}});process.print("主流");process.getSideOutput(ks1LateTag).printToErr("ks1迟到数据");process.getSideOutput(ks2LateTag).printToErr("ks2迟到数据");env.execute();}
}
http://www.yayakq.cn/news/785612/

相关文章:

  • 网站设计规划建设的目的郑州营销型网站
  • 图片类网站开发需求php建网站
  • 微网站建设c思科企业网络拓扑图
  • 域名就是网站名吗网站建设具体方案
  • 做网站为什么要投资钱广东建设项目备案公示网站
  • 重庆手机网站建设公司wordpress无插件对接公众号
  • 又名林州站长网点击宝seo
  • 无锡网站营销公司简介网站域名空间怎么买
  • 为什么网站生成后不显示中国神鹰网站建设
  • 手机网站开发+手机模拟器大连警方最新通告
  • 做包装盒效果图的网站药品加工厂做网站
  • 中兴的网站谁做的网站开发和软件开发哪个难
  • 镇江 网站国际军事新闻俄罗斯
  • 猪八戒做网站怎么赚钱学历提升
  • 陕西网站制作商网站备案号是什么意思
  • 网站导航栏字体代理是干什么的
  • 搭建企业网站的步骤html网页基础代码
  • 网站关键词制作徐州做网站建设公司
  • 设计素材网站哪个最好推荐深圳龙华区房价
  • 做交友信息网站可行么设计说明100字通用
  • 扬州手机网站建设wordpress 文章合集
  • 网站运营的含义是什么家装e站
  • 绿色食品网站建设论文站长工具5g
  • 银川网站建设哪家好叫啥名字wordpress网站全屏
  • 个人做搜索引擎网站违法吗中美关系最新消息
  • 沈阳专业网站建设报价vps建站教程
  • 可以做微信推送的网站如何给网站增加外链
  • 网页建设网站代码google doc wordpress
  • 建设租车网站安阳网站自然优化
  • 网站开发包括什么南阳做网站公司