当前位置: 首页 > news >正文

我对网站开发的项目反思wordpress移植

我对网站开发的项目反思,wordpress移植,检测网站为什么打不开了,产品设计平台einsum详解 该函数用于对一组输入 Tensor 进行 Einstein 求和,该函数目前仅适用于paddle的动态图。 Einstein 求和是一种采用 Einstein 标记法描述的 Tensor 求和,输入单个或多个 Tensor,输出单个 Tensor。 paddle.einsum(equation, *opera…

einsum详解

该函数用于对一组输入 Tensor 进行 Einstein 求和,该函数目前仅适用于paddle的动态图。

Einstein 求和是一种采用 Einstein 标记法描述的 Tensor 求和,输入单个或多个 Tensor,输出单个 Tensor。

在这里插入图片描述

paddle.einsum(equation, *operands)

参数

  • equation (str):求和标记
  • operands (Tensor, [Tensor, …]):输入 Tensor

返回

  • Tensor:输出 Tensor

求和特例

  • 单操作数

    • 迹:trace

    • 对角元:diagonal

    • 转置:transpose

    • 求和:sum

  • 双操作数

    • 内积:dot

    • 外积:outer

    • 广播乘积:mul,*

    • 矩阵乘:matmul

    • 批量矩阵乘:bmm

  • 多操作数

    • 广播乘积:mul,*

    • 多矩阵乘:A.matmul(B).matmul(C)

关于求和标记的约定

  • 维度分量下标:Tensor 的维度分量下标使用英文字母表示,不区分大小写,如’ijk’表示 Tensor 维度分量为 i,j,k

  • 下标对应输入操作数:维度下标以`,`分段,按顺序 1-1 对应输入操作数

  • 广播维度:省略号`…`表示维度的广播分量,例如,'i…j’表示首末分量除外的维度需进行广播对齐

  • 自由标和哑标:输入标记中仅出现一次的下标为自由标,重复出现的下标为哑标,哑标对应的维度分量将被规约消去

  • 输出:输出 Tensor 的维度分量既可由输入标记自动推导,也可以用输出标记定制化

  • 自动推导输出

    • 广播维度分量位于维度向量高维位置,自由标维度分量按字母顺序排序,位于维度向量低纬位置,哑标维度分量不输出
  • 定制化输出

    • 维度标记中`->`右侧为输出标记

    • 若输出包含广播维度,则输出标记需包含`…`

    • 输出标记为空时,对输出进行全量求和,返回该标量

    • 输出不能包含输入标记中未出现的下标

    • 输出下标不可以重复出现

    • 哑标出现在输出标记中则自动提升为自由标

    • 输出标记中未出现的自由标被降为哑标

例子

  • ‘…ij, …jk’,该标记中 i,k 为自由标,j 为哑标,输出维度’…ik’

  • ‘ij -> i’,i 为自由标,j 为哑标

  • ‘…ij, …jk -> …ijk’,i,j,k 均为自由标

  • ‘…ij, …jk -> ij’,若输入 Tensor 中的广播维度不为空,则该标记为无效标记

求和规则

Einsum 求和过程理论上等价于如下四步,但实现中实际执行的步骤会有差异。

  • 第一步,维度对齐:将所有标记按字母序排序,按照标记顺序将输入 Tensor 逐一转置、补齐维度,使得处理后的所有 Tensor 其维度标记保持一致

  • 第二步,广播乘积:以维度下标为索引进行广播点乘

  • 第三步,维度规约:将哑标对应的维度分量求和消除

  • 第四步,转置输出:若存在输出标记,则按标记进行转置,否则按广播维度+字母序自由标的顺序转置,返回转之后的 Tensor 作为输出

关于 trace 和 diagonal 的标记约定(待实现功能)

  • 在单个输入 Tensor 的标记中重复出现的下标称为对角标,对角标对应的坐标轴需进行对角化操作,如’i…i’表示需对首尾坐标轴进行对角化

  • 若无输出标记或输出标记中不包含对角标,则对角标对应维度规约为标量,相应维度取消,等价于 trace 操作

  • 若输出标记中包含对角标,则保留对角标维度,等价于 diagonal 操作

实例实践

首先,看一下一维度简单实验:

import paddle# 定义两个输入矩阵
# paddle.seed(102)
# x = paddle.rand([4])
# y = paddle.rand([5])
x = paddle.to_tensor([1,2,], dtype='float32')
y = paddle.to_tensor([3,4,5], dtype='float32')# sum
sum_x = paddle.einsum('i->', x).numpy()# dot
dox_x = paddle.einsum('i,i->', x, x).numpy()# outer
outer_xy = paddle.einsum("i,j->ij", x, y).numpy()print(f"x: {x.numpy()}, shape: {x.shape}")
print(f"y: {y.numpy()}, shape: {y.shape}")
print(f"sum_x: {sum_x}, shape: {sum_x.shape}")
print(f"dox_x: {dox_x}, shape: {dox_x.shape}")
print(f"outer_xy: {outer_xy}, shape: {outer_xy.shape}")

结果输出为:

x: [1. 2.], shape: [2]
y: [3. 4. 5.], shape: [3]
sum_x: 3.0, shape: ()
dox_x: 5.0, shape: ()
outer_xy: [[ 3.  4.  5.][ 6.  8. 10.]], shape: (2, 3)

然后,看一下高纬度的实验:

import paddle# A = paddle.rand([2, 3, 2])
# B = paddle.rand([2, 2, 3])
A = paddle.to_tensor([[[1,2],[1,2],[1,2]], [[1,2],[1,2],[1,2]]], dtype='float32')
B = paddle.to_tensor([[[3,4,5],[3,4,5]], [[3,4,5],[3,4,5]]], dtype='float32')# transpose
transpose_A = paddle.einsum('ijk->kji', A)# batch matrix multiplication
BMM_AB = paddle.einsum('ijk, ikl->ijl', A,B)# Ellipsis transpose
ET_A = paddle.einsum('...jk->...kj', A)# Ellipsis batch matrix multiplication
EBMM_AB = paddle.einsum('...jk, ...kl->...jl', A,B)print(f"A: {A.numpy()}, shape: {A.shape}")
print(f"B: {B.numpy()}, shape: {B.shape}")
print(f"transpose_A: {transpose_A.numpy()}, shape: {transpose_A.shape}")
print(f"BMM_AB: {BMM_AB.numpy()}, shape: {BMM_AB.shape}")
print(f"ET_A: {ET_A.numpy()}, shape: {ET_A.shape}")
print(f"EBMM_AB: {EBMM_AB.numpy()}, shape: {EBMM_AB.shape}")

结果输出为:

A: [[[1. 2.][1. 2.][1. 2.]][[1. 2.][1. 2.][1. 2.]]], shape: [2, 3, 2]
B: [[[3. 4. 5.][3. 4. 5.]][[3. 4. 5.][3. 4. 5.]]], shape: [2, 2, 3]
transpose_A: [[[1. 1.][1. 1.][1. 1.]][[2. 2.][2. 2.][2. 2.]]], shape: [2, 3, 2]
BMM_AB: [[[ 9. 12. 15.][ 9. 12. 15.][ 9. 12. 15.]][[ 9. 12. 15.][ 9. 12. 15.][ 9. 12. 15.]]], shape: [2, 3, 3]
ET_A: [[[1. 1. 1.][2. 2. 2.]][[1. 1. 1.][2. 2. 2.]]], shape: [2, 2, 3]
EBMM_AB: [[[ 9. 12. 15.][ 9. 12. 15.][ 9. 12. 15.]][[ 9. 12. 15.][ 9. 12. 15.][ 9. 12. 15.]]], shape: [2, 3, 3]

reference

关于matmul可以查看:https://blog.csdn.net/orDream/article/details/133744368
官方链接:
@misc{BibEntry2023Oct,
title = {{einsum-API文档-PaddlePaddle深度学习平台}},
year = {2023},
month = oct,
urldate = {2023-10-10},
language = {chinese},
note = {[Online; accessed 10. Oct. 2023]},
url = {https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/einsum_cn.html}
}

http://www.yayakq.cn/news/136299/

相关文章:

  • 做期货要关注哪些网站seo关键词优化教程
  • 谷歌镜像网站怎么做wordpress archives
  • 河北邢台手机网站建设高端网站建设 南京
  • 信云科技的vps怎么做网站网站开发用什么服务器
  • 微信转账做网站收款东莞网站建设制作厂
  • 关于电影网站的论文摘要wordpress落地页改造
  • 网站开发实现页面的跳转建网站怎么挣钱的
  • 亮点云建站惠州搜索引擎seo
  • 网站建设方案的写作方法wordpress响应式网站
  • asp网站开发视频教程网站建设与管理教学方案
  • vue php 哪个做网站 好做网站怎么买断源码
  • sns社交网站.net源码999网站免费
  • 具有品牌的广州做网站河北怎样做网站
  • 个人空间网站搜索引擎优化基本
  • 织梦网站建设实训总结起点网站建设
  • 网站都是在哪里制作的手表网站欧米茄报价
  • 网站运维工作内容岫岩县网站建设
  • 萍乡网站建设哪家好哦专业做合同的网站
  • 网站信管局备案wordpress 主题小工具
  • 公网ip做网站访问不wordpress前台不显示图片
  • 门户网站 特点免费网站添加站长统计
  • 网站规划的基本原则wordpress主题宽度修改
  • 网站建设如何更加稳定wordpress 模版仿米拓
  • 成都建站培训北京招标网官网
  • 化学网站定制做物流网站电话
  • 培训网站欣赏湖北外贸网站建设多少钱
  • 章丘做网站wordpress二次开发教程种子
  • 郑州专业网站建设价格wordpress 作者
  • 卓拙科技做网站吗佛山哪个做网站的好
  • 淘宝客网站建设公司网页制作基础教程课件