当前位置: 首页 > news >正文

如何增加网站的流量推荐一些外国做产品网站

如何增加网站的流量,推荐一些外国做产品网站,专业做网站的人,万能导航网任务 信用卡数字识别 穿插之前学的知识点 形态学操作 模板匹配 等 总体流程与方法 1.有一个模板 2 用轮廓检测把模板中数字拿出来 外接矩形(模板和输入图像的大小要一致 )3 一系列预处理操作 问题的解决思路 1.分析准备:准备模板&#…

任务 信用卡数字识别

穿插之前学的知识点  形态学操作 模板匹配 等

总体流程与方法

1.有一个模板 2 用轮廓检测把模板中数字拿出来 外接矩形(模板和输入图像的大小要一致

)3 一系列预处理操作

问题的解决思路

1.分析准备:准备模板,读取文件——转化为灰度图——转化为二值图——提取轮廓——遍历每一个轮廓 得到每个数字的模板,排序,大小裁剪为指定大小(57*88)digits[i] = roi

2.处理输入的带数字的银行卡  (1)预处理 我们需要拿到的是 一组一组的数字 一共四组  读取文件——变换大小——转化为灰度图——形态学操作(礼帽操作突出明亮区域——梯度操作计算轮廓信息——闭操作将数字连在一起——二值化操作寻找合适阈值——再来一个闭操作——计算轮廓——遍历轮廓(选择合适区域 排除不是数字的轮廓)——轮廓排序——遍历轮廓的每一个数字——预处理计算每一组轮廓——计算每一组中的每一个值——匹配得分——得到数字画出来——得到结果——打印结果)

#设置参数

ap = argparse.ArgumentParser()#编写命令行接口
ap.add_argument("-i", "--image", required=True,help="path to input image")#添加命令行参数
ap.add_argument("-t", "--template", required=True,help="path to template OCR-A image")
args = vars(ap.parse_args())#解析参数 将参数转化为字典的形式

img = cv2.imread(args["template"])
def cv_show(name,img):cv2.imshow(name, img)cv2.waitKey(0)# waitKey()#是在一个给定的时间内(单位ms)等待用户按键触发 0 无限等待 按任意键继续cv2.destroyAllWindows()

1.cv2.cvtColor颜色空间转换函数 cv2.imread()和cv2.cvtColor() 的使用-CSDN博客

ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#颜色空间转换函数
2.cv2.threshold  二值化函数 [OpenCV] cv2.threshold二值化函数使用方法总结_cv2.threshold函数-CSDN博客
ref = cv2.threshold(ref, 100, 255, cv2.THRESH_BINARY_INV)[1]#二值化函数

3.计算轮廓 

refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)#查找轮廓函数 只检测外轮廓 只保留四个点轮廓信息

4.画出轮廓

cv2.drawContours(img,refCnts,-1,(0,0,255),3) #画出轮廓函数

5.轮廓排序

refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下

6.遍历轮廓

digits = {}
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):# 计算外接矩形并且resize成合适大小(x, y, w, h) = cv2.boundingRect(c)roi = ref[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))# 每一个数字对应每一个模板digits[i] = roi
2.0初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))

2.1 对要识别的图像进行大小灰度处理

#读取输入图像,预处理
image = cv2.imread(args["image"])
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)

2.2 #礼帽操作,突出更明亮的区域

#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
#
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的ksize=-1)gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")print (np.array(gradX).shape)
cv_show('gradX',gradX)
2.3#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel) 
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] 
cv_show('thresh',thresh)#再来一个闭操作thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)2.4# 计算轮廓threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) 
cv_show('img',cur_img)
locs = []# 遍历轮廓
for (i, c) in enumerate(cnts):# 计算矩形(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组if ar > 2.5 and ar < 4.0:if (w > 40 and w < 55) and (h > 10 and h < 20):#符合的留下来locs.append((x, y, w, h))# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):# initialize the list of group digitsgroupOutput = []# 根据坐标提取每一个组group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]cv_show('group',group)# 预处理group = cv2.threshold(group, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]cv_show('group',group)# 计算每一组的轮廓digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)digitCnts = contours.sort_contours(digitCnts,method="left-to-right")[0]# 计算每一组中的每一个数值for c in digitCnts:# 找到当前数值的轮廓,resize成合适的的大小(x, y, w, h) = cv2.boundingRect(c)roi = group[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))cv_show('roi',roi)# 计算匹配得分scores = []# 在模板中计算每一个得分for (digit, digitROI) in digits.items():# 模板匹配result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)(_, score, _, _) = cv2.minMaxLoc(result)scores.append(score)# 得到最合适的数字groupOutput.append(str(np.argmax(scores)))# 画出来cv2.rectangle(image, (gX - 5, gY - 5),(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)cv2.putText(image, "".join(groupOutput), (gX, gY - 15),cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)# 得到结果output.extend(groupOutput)# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)

总的代码

# 导入工具包
from imutils import contours
import numpy as np
import argparse
import cv2
import myutils# 设置参数
ap = argparse.ArgumentParser()#编写命令行接口
ap.add_argument("-i", "--image", required=True,help="path to input image")#添加命令行参数
ap.add_argument("-t", "--template", required=True,help="path to template OCR-A image")
args = vars(ap.parse_args())#解析参数 将参数转化为字典的形式# 指定信用卡类型
FIRST_NUMBER = {"3": "American Express","4": "Visa","5": "MasterCard","6": "Discover Card"
}
# 绘图展示
def cv_show(name,img):cv2.imshow(name, img)cv2.waitKey(0)# waitKey()–是在一个给定的时间内(单位ms)等待用户按键触发 0 无限等待 按任意键继续cv2.destroyAllWindows()
# 读取一个模板图像
img = cv2.imread(args["template"])
cv_show('img',img)
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#颜色空间转换函数
cv_show('ref',ref)
# 二值图像
ref = cv2.threshold(ref, 100, 255, cv2.THRESH_BINARY_INV)[1]#二值化函数
cv_show('ref',ref)# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)#查找轮廓函数 只检测外轮廓 只保留四个点轮廓信息cv2.drawContours(img,refCnts,-1,(0,0,255),3) #画出轮廓函数
cv_show('img',img)
print (np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
digits = {}
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):# 计算外接矩形并且resize成合适大小(x, y, w, h) = cv2.boundingRect(c)roi = ref[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))# 每一个数字对应每一个模板digits[i] = roi# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))#读取输入图像,预处理
image = cv2.imread(args["image"])
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
#
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的ksize=-1)gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")print (np.array(gradX).shape)
cv_show('gradX',gradX)#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)#再来一个闭操作thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)# 计算轮廓threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) 
cv_show('img',cur_img)
locs = []# 遍历轮廓
for (i, c) in enumerate(cnts):# 计算矩形(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组if ar > 2.5 and ar < 4.0:if (w > 40 and w < 55) and (h > 10 and h < 20):#符合的留下来locs.append((x, y, w, h))# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):# initialize the list of group digitsgroupOutput = []# 根据坐标提取每一个组group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]cv_show('group',group)# 预处理group = cv2.threshold(group, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]cv_show('group',group)# 计算每一组的轮廓digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)digitCnts = contours.sort_contours(digitCnts,method="left-to-right")[0]# 计算每一组中的每一个数值for c in digitCnts:# 找到当前数值的轮廓,resize成合适的的大小(x, y, w, h) = cv2.boundingRect(c)roi = group[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))cv_show('roi',roi)# 计算匹配得分scores = []# 在模板中计算每一个得分for (digit, digitROI) in digits.items():# 模板匹配result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)(_, score, _, _) = cv2.minMaxLoc(result)scores.append(score)# 得到最合适的数字groupOutput.append(str(np.argmax(scores)))# 画出来cv2.rectangle(image, (gX - 5, gY - 5),(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)cv2.putText(image, "".join(groupOutput), (gX, gY - 15),cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)# 得到结果output.extend(groupOutput)# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)

http://www.yayakq.cn/news/614645/

相关文章:

  • 服饰视频网站建设南昌网站建设培训班
  • 优酷网站怎么做的网站seo优化方法
  • 贸易公司做网站怎么样旅游电子商务项目计划书
  • 网站定制北京开一个软件开发公司需要多少钱
  • 手机网站建设报价表成安企业做网站推广
  • 网站做长连接wordpress模板选择器
  • 网站为什么做静态做竞价的网站可以做优化吗
  • 寮步镇网站仿做郑州市域名服务公司
  • 定制网站建设服务商长春好的做网站公司排名
  • 可以推广的网站有哪些免费域名申请网站大全
  • 仓库管理系统erp湖南seo优化哪家好
  • 建设小网站教程如何对网站用户分析
  • 可以免费注册的网站163邮箱注册申请注册
  • 青岛做网站电话做姓氏图的网站
  • 大连专业企业建站找哪家亚马逊跨境电商培训
  • 上海网站开发平台高质量的集团网站建设
  • python 兼职网站开发内蒙古网站建设云聚
  • 网站建设 协议书淘宝客网站 建设要钱不
  • 潍坊网站建设 管雷鸣wordpress 图片预加载
  • linux下做网站WordPress 5.0.1怎麼使用
  • 佛山网站建设 骏域空间站 对接
  • 网站开发流程详细步骤装修平台排行榜前十名
  • 手机网站怎么建设做企业网站后期还需要费用吗
  • 朝西村网站建设公司怎么自定义wordpress登录页面
  • 建设银行车贷网站网站备案需先做网站吗
  • 汇米网站建设五屏网站建设怎样
  • 宝石网站建设石家庄市建设局质监站网站
  • 罗村网站建设哪里网站用vue.js做的
  • 营销网站售后调查系统网站建设哪里好 厦门
  • 电子商务网站建设的工具景安 怎么把网站做别名