当前位置: 首页 > news >正文

南通做微网站html网页代码案例

南通做微网站,html网页代码案例,电脑系统重装wordpress,品牌推广包括哪些内容文章目录 1.QR分解Schmidt正交化Householder变换QR分解的应用 2. 求矩阵特征值、特征向量的基本方法3.SVD分解SVD分解的应用 参考文献 1.QR分解 矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积的形式。 任意实数方阵A&#xff0c…

文章目录

    • 1.QR分解
      • Schmidt正交化
      • Householder变换
      • QR分解的应用
    • 2. 求矩阵特征值、特征向量的基本方法
    • 3.SVD分解
      • SVD分解的应用
    • 参考文献

1.QR分解

矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积的形式。
任意实数方阵A,都能被分解 。这里的Q为正交单位阵,即 R是一个上三角矩阵。这种分解被称为QR分解。
QR分解也有若干种算法,常见的包括Gram–Schmidt、Householder和Givens算法。 QR分解是将矩阵分解为一个正交矩阵与上三角矩阵的乘积。用一张图可以形象地表示QR分解:
在这里插入图片描述

Schmidt正交化

定理1
设A是n阶实非奇异矩阵,则存在正交矩阵Q和实非奇异上三角矩阵R使A有QR分解;且除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外,分解是唯一的.

定理2
设A是m×n实矩阵,且其n个列向量线性无关,则A有分解A=QR,其中Q是m×n实矩阵,且满足QHTQ=E,R是n阶实非奇异上三角矩阵该分解除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外是唯一的.用Schmidt正交化分解方法对矩阵进行QR分解时,所论矩阵必须是列满秩矩阵。

用施密特正交计算方法如下:
在这里插入图片描述
在这里插入图片描述

Householder变换

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Householder法QR分解例子:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

QR分解的应用

QR 分解经常用来解线性最小二乘法问题。

2. 求矩阵特征值、特征向量的基本方法

由于SVD分解会涉及到矩阵特征值和特征向量的求解,因此有必要简单介绍下矩阵特征值的求解方法。
在这里插入图片描述
在这里插入图片描述

3.SVD分解

奇异矩阵是指行列式值为零的方阵,它具有以下特点:

非满秩:矩阵的秩小于其阶数,意味着行向量或列向量线性相关。
不可逆:没有逆矩阵,因为逆运算要求行列式不为零。
零空间非空:存在非零向量与之相乘结果为零向量。
与线性方程组求解相关:如果系数矩阵奇异,方程组可能无解或有无穷多解。
非奇异矩阵的对比:非奇异矩阵(可逆矩阵)行列式不为零,满秩,有唯一逆矩阵和零解。

矩阵的特征值和奇异值是线性代数中重要的概念,它们之间存在一定的关系。

对于一个方阵,其特征值是该矩阵在空间中的特殊向量方向上的缩放因子。特征值可以通过解矩阵的特征值问题得到,即找到满足方程 Ax = λx 的非零向量 x 和标量 λ。

而对于一个非方阵的矩阵,它的奇异值则是矩阵的秩和特征向量的相对缩放因子。奇异值分解(SVD)可以将矩阵分解为三个部分:U、Σ 和 V^T,其中 U 和 V 是正交矩阵,Σ 是一个对角矩阵,对角线上的元素就是矩阵的奇异值。

有以下关系:
对于一个方阵,其特征值等于其奇异值。
对于一个非方阵的矩阵,其奇异值是其特征值的平方根。
需要注意的是,特征值和奇异值所描述的信息不完全相同,特征值更多地描述了矩阵在特定方向上的缩放,而奇异值则更多地描述了矩阵整体的缩放和旋转。它们在不同的应用领域和问题中有着不同的用途和解释。
在这里插入图片描述

例题分析:
在这里插入图片描述

SVD分解的应用

1.降维
通过上面的式子很容易看出,原来矩阵AA的特征有nn维。而经过SVD分解之后,完全可以用前rr个非零奇异值对应的奇异向量表示矩阵AA的主要特征。这样,就天然起到了降维的作用。
2.压缩
还是看上面的式子,再结合第三部分的图,也很容易看出,经过SVD分解以后,要表示原来的大矩阵AA,我们只需要存U,Σ,V三个较小的矩阵的即可。而这三个较小矩阵的规模,加起来也远远小于原有矩阵AA。这样,就天然起到了压缩的作用。

参考文献

SVD分解和QR分解—Apple的学习笔记
Math-Model(五)正交分解(QR分解)
householder进行矩阵QR分解
QR分解-givens旋转与Householder变换
特征值,特征向量和矩阵对角化
数值计算3:特征值、特征向量和对角化
超详细解释奇异值分解(SVD)【附例题和分析】
奇异值分解(SVD)
这是我见过最通俗易懂的SVD(奇异值分解)算法介绍
https://math.ecnu.edu.cn/~jypan/Teaching/NA/2021/slides_03D_LS.pdf
https://math.ecnu.edu.cn/~jypan/Teaching/NA/2021/slides_02A_LU.pdf
https://math.ecnu.edu.cn/~jypan/Teaching/NA/2021/

http://www.yayakq.cn/news/335909/

相关文章:

  • 网站建设 任务分配表上海万户网络技术有限公司
  • 国内设计好的网站案例wordpress cnzz
  • 百度站长平台提交网站石家庄网站建设的公司
  • 西安网站seo 优帮云东城网站制作公司
  • 网站建设相关推荐在线制作名片生成器
  • 客户关系管理360优化大师官方最新
  • 怎么评判一个网站做的好与坏销客多
  • 樟木头网站做翻译网站 知乎
  • 杭州网站排名flash企业网站
  • 红酒企业网站建设产品外观设计报价
  • 门户网站好处漯河网站建设服务公司
  • 网站搭建制作app下载平台哪个好
  • 地方门户网站建设要求阿图什网站
  • 只有一个人网站开发建立长效机制
  • 甘肃省住房和城乡建设厅网站职称证查询腾讯云是做网站的吗
  • 微信分销网站建设建网站和建网店的区别
  • 怎么搭建一个博客网站wordpress get terms
  • 宿州市做网站的公司wordpress首页幻灯
  • 网站建设开发教程视频教程惠州企业网站建设
  • 网站空间过期网站申请备案要多久
  • 高臣网站建设公司乐清网站建设公司哪家好
  • 400电话单页网站对其网站建设进行了考察调研
  • 如何做众筹网站360免费建站视频
  • 河北网站seo超级营销型网站模板
  • 建筑企业登录哪个网站电商开放平台
  • 注册网站刀具与钢材范围岳阳建设企业网站
  • 公司网站制作机构毕业设计做网站选题
  • 网站建设属于技术开发合同吗ip子域名查询
  • 网站建设公司 资讯模板手机网站建设公司排名
  • 郑州招聘网站有哪些简单的工作室网站模板