当前位置: 首页 > news >正文

解析软件的网站东莞室内设计培训

解析软件的网站,东莞室内设计培训,屏蔽wordpress头像,wordpress js拆分学习的概念 拆分学习的核心思想是拆分网络结构。每一个参与方拥有模型结构的一部分,所有参与方的模型合在一起形成一个完整的模型。训练过程中,不同参与方只对本地模型进行正向或者反向传播计算,并将计算结果传递给下一个参与方。多个参…

拆分学习的概念

拆分学习的核心思想是拆分网络结构。每一个参与方拥有模型结构的一部分,所有参与方的模型合在一起形成一个完整的模型。训练过程中,不同参与方只对本地模型进行正向或者反向传播计算,并将计算结果传递给下一个参与方。多个参与方通过联合模型进行训练直至最终收敛。

一个典型的拆分学习例子:

Alice持有数据和基础模型。Bob只有数据、基础模型和fuse模型。

  1. Alice使用自己的数据和基础模型得到 hidden0,然后发送给Bob。
  2. Bob使用自己的数据和基础模型得到 hidden1
  3. Agg Layer使用 hidden_0 和 hidden_1 作为输入,并输出聚合后的隐层。
  4. Bob把聚合后的隐层作为fuse模型的输入,计算得到梯度。
  5. 梯度被拆分成两部分,分别返回给Alice和Bob。
  6. Alice和Bob使用各自收到的梯度更新基础模型。

SplitRec

SplitRec是隐语拆分学习针对跨域推荐场景中的模型训练所提供的一系列优化算法和策略。

在传统推荐场景中,用户的数据通常需要上传到中央服务器进行模型训练。而跨域推荐场景是指联合分布在不同域的数据进行分布式训练的推荐场景。例如一个用户在一个短视频平台看了很多短视频,在另一个电商平台被推荐相关的广告,电商平台除了自有数据外,也希望从短视频平台的数据中挖掘相关的信息。同时出于数据安全考虑,各平台数据不能被上传到中央服务器进行集中式的机器学习训练,这种联合分布在不同域的数据进行模型训练的场景很适合用联邦学习中的拆分学习。

跨域推荐模型将不同域的用户数据联合起来建模,相比传统推荐系统收集到的数据更多更丰富,同时由于数据分布在不同域,在精度、效率和安全性上都对模型的训练提出了很多挑战,主要有以下三点:

  • 模型效果上,例如DeepFM等复杂模型能否直接放到拆分框架中使用?
  • 训练效率上,模型训练中每个 batch 的前反向计算中的通信是否会严重降低训练效率?
  • 安全性上,通信的中间数据是否会造成信息泄露,引起安全性问题?

SplitRec 在效果、效率和安全方面对拆分模型训练做了很多优化。

  • 模型效果上,SplitRec 提供了拆分 DeepFM、BST、MMoe 等模型的封装。
  • 训练效率上,SplitRec 借由隐语拆分学习框架的能力,提供了压缩、流水并行等策略来提升训练效率。
  • 安全性上,SplitRec提供了安全聚合、差分隐私等安全策略。同时也提供了一些针对拆分学习的攻击方法,来验证不同攻击手段对拆分模型的影响,后续也会更新相关防御方法。

实践:在隐语中使用拆分 DeepFM 算法

DeepFM算法结合了FM和神经网络的长处,可以同时提升低维和高维特征,相比Wide&Deep模型还免去了特征工程的部分。

整体上来看。这个模型可以分成两个部分,分别是FM部分以及Deep部分。这两个部分的输入是一样的,并没有像Wide & Deep模型那样做区分。Deep的部分用来训练这些特征的高维的关联,而FM模型会通过隐藏向量V的形式来计算特征之间的二维交叉的信息。

隐语中的DeepFM

拆分的详细过程可以来看这里:

SplitRec:在隐语中使用拆分 DeepFM 算法(Tensorflow 后端) | SecretFlow v1.9.0b1 | 隐语 SecretFlow

环境设置

import secretflow as sf# Check the version of your SecretFlow
print('The version of SecretFlow: {}'.format(sf.__version__))# In case you have a running secretflow runtime already.
sf.shutdown()
sf.init(['alice', 'bob', 'charlie'], address="local", log_to_driver=False)
alice, bob, charlie = sf.PYU('alice'), sf.PYU('bob'), sf.PYU('charlie')

数据集介绍

我们这里将使用最经典的MovieLens数据集来进行演示。 MovieLens是一个开放式的推荐系统数据集,包含了电影评分和电影元数据信息。

我们对数据进行了切分:

- alice: “UserID”, “Gender”, “Age”, “Occupation”, “Zip-code”

- bob: “MovieID”, “Rating”, “Title”, “Genres”, “Timestamp”

下载并处理数据

数据拆分处理

%%capture
%%!
wget https://secretflow-data.oss-accelerate.aliyuncs.com/datasets/movielens/ml-1m.zip
unzip ./ml-1m.zip
# Read the data in dat format and convert it into a dictionary
def load_data(filename, columns):data = {}with open(filename, "r", encoding="unicode_escape") as f:for line in f:ls = line.strip("\n").split("::")data[ls[0]] = dict(zip(columns[1:], ls[1:]))return data
fed_csv = {alice: "alice_ml1m.csv", bob: "bob_ml1m.csv"}
csv_writer_container = {alice: open(fed_csv[alice], "w"), bob: open(fed_csv[bob], "w")}
part_columns = {alice: ["UserID", "Gender", "Age", "Occupation", "Zip-code"],bob: ["MovieID", "Rating", "Title", "Genres", "Timestamp"],
}
for device, writer in csv_writer_container.items():writer.write("ID," + ",".join(part_columns[device]) + "\n")
f = open("ml-1m/ratings.dat", "r", encoding="unicode_escape")users_data = load_data("./ml-1m/users.dat",columns=["UserID", "Gender", "Age", "Occupation", "Zip-code"],
)
movies_data = load_data("./ml-1m/movies.dat", columns=["MovieID", "Title", "Genres"])
ratings_columns = ["UserID", "MovieID", "Rating", "Timestamp"]rating_data = load_data("./ml-1m/ratings.dat", columns=ratings_columns)def _parse_example(feature, columns, index):if "Title" in feature.keys():feature["Title"] = feature["Title"].replace(",", "_")if "Genres" in feature.keys():feature["Genres"] = feature["Genres"].replace("|", " ")values = []values.append(str(index))for c in columns:values.append(feature[c])return ",".join(values)index = 0
num_sample = 1000
for line in f:ls = line.strip().split("::")rating = dict(zip(ratings_columns, ls))rating.update(users_data.get(ls[0]))rating.update(movies_data.get(ls[1]))for device, columns in part_columns.items():parse_f = _parse_example(rating, columns, index)csv_writer_container[device].write(parse_f + "\n")index += 1if num_sample > 0 and index >= num_sample:break
for w in csv_writer_container.values():w.close()

到此就完成了数据的处理和拆分

得到

alice: alice_ml1m.csv

bob: bob_ml1m.csv

! head alice_ml1m.csv
! head bob_ml1m.csv

构造data_builder_dict

# alice
def create_dataset_builder_alice(batch_size=128,repeat_count=5,
):def dataset_builder(x):import pandas as pdimport tensorflow as tfx = [dict(t) if isinstance(t, pd.DataFrame) else t for t in x]x = x[0] if len(x) == 1 else tuple(x)data_set = (tf.data.Dataset.from_tensor_slices(x).batch(batch_size).repeat(repeat_count))return data_setreturn dataset_builder# bob
def create_dataset_builder_bob(batch_size=128,repeat_count=5,
):def _parse_bob(row_sample, label):import tensorflow as tfy_t = label["Rating"]y = tf.expand_dims(tf.where(y_t > 3,tf.ones_like(y_t, dtype=tf.float32),tf.zeros_like(y_t, dtype=tf.float32),),axis=1,)return row_sample, ydef dataset_builder(x):import pandas as pdimport tensorflow as tfx = [dict(t) if isinstance(t, pd.DataFrame) else t for t in x]x = x[0] if len(x) == 1 else tuple(x)data_set = (tf.data.Dataset.from_tensor_slices(x).batch(batch_size).repeat(repeat_count))data_set = data_set.map(_parse_bob)return data_setreturn dataset_builderdata_builder_dict = {alice: create_dataset_builder_alice(batch_size=128,repeat_count=5,),bob: create_dataset_builder_bob(batch_size=128,repeat_count=5,),
}
from secretflow.ml.nn.applications.sl_deep_fm import DeepFMbase, DeepFMfuse
from secretflow.ml.nn import SLModelNUM_USERS = 6040
NUM_MOVIES = 3952
GENDER_VOCAB = ["F", "M"]
AGE_VOCAB = [1, 18, 25, 35, 45, 50, 56]
OCCUPATION_VOCAB = [i for i in range(21)]
GENRES_VOCAB = ["Action","Adventure","Animation","Children's","Comedy","Crime","Documentary","Drama","Fantasy","Film-Noir","Horror","Musical","Mystery","Romance","Sci-Fi","Thriller","War","Western",
]

DeepFMBase有4个参数:

-dnn_units_size: 这个参数需要提供一个list来对dnn部分进行定义,比如[256,32]意思是中间两个隐层分别是256,和32

-dnn_activation: dnn 的激活函数,eg:relu

-preprocess_layer: 需要对输入进行处理,传入一个定义好的keras.preprocesslayer

-fm_embedding_dim: fm vector的维度是多少

# Define alice's basenet
def create_base_model_alice():# Create modeldef create_model():import tensorflow as tfdef preprocess():inputs = {"UserID": tf.keras.Input(shape=(1,), dtype=tf.string),"Gender": tf.keras.Input(shape=(1,), dtype=tf.string),"Age": tf.keras.Input(shape=(1,), dtype=tf.int64),"Occupation": tf.keras.Input(shape=(1,), dtype=tf.int64),}user_id_output = tf.keras.layers.Hashing(num_bins=NUM_USERS, output_mode="one_hot")user_gender_output = tf.keras.layers.StringLookup(vocabulary=GENDER_VOCAB, output_mode="one_hot")user_age_out = tf.keras.layers.IntegerLookup(vocabulary=AGE_VOCAB, output_mode="one_hot")user_occupation_out = tf.keras.layers.IntegerLookup(vocabulary=OCCUPATION_VOCAB, output_mode="one_hot")outputs = {"UserID": user_id_output(inputs["UserID"]),"Gender": user_gender_output(inputs["Gender"]),"Age": user_age_out(inputs["Age"]),"Occupation": user_occupation_out(inputs["Occupation"]),}return tf.keras.Model(inputs=inputs, outputs=outputs)preprocess_layer = preprocess()model = DeepFMbase(dnn_units_size=[256, 32],preprocess_layer=preprocess_layer,)model.compile(loss=tf.keras.losses.binary_crossentropy,optimizer=tf.keras.optimizers.Adam(),metrics=[tf.keras.metrics.AUC(),tf.keras.metrics.Precision(),tf.keras.metrics.Recall(),],)return model  # need wrapreturn create_model
# Define bob's basenet
def create_base_model_bob():# Create modeldef create_model():import tensorflow as tf# define preprocess layerdef preprocess():inputs = {"MovieID": tf.keras.Input(shape=(1,), dtype=tf.string),"Genres": tf.keras.Input(shape=(1,), dtype=tf.string),}movie_id_out = tf.keras.layers.Hashing(num_bins=NUM_MOVIES, output_mode="one_hot")movie_genres_out = tf.keras.layers.TextVectorization(output_mode='multi_hot', split="whitespace", vocabulary=GENRES_VOCAB)outputs = {"MovieID": movie_id_out(inputs["MovieID"]),"Genres": movie_genres_out(inputs["Genres"]),}return tf.keras.Model(inputs=inputs, outputs=outputs)preprocess_layer = preprocess()model = DeepFMbase(dnn_units_size=[256, 32],preprocess_layer=preprocess_layer,)model.compile(loss=tf.keras.losses.binary_crossentropy,optimizer=tf.keras.optimizers.Adam(),metrics=[tf.keras.metrics.AUC(),tf.keras.metrics.Precision(),tf.keras.metrics.Recall(),],)return model  # need wrapreturn create_model

定义Fusenet

def create_fuse_model():# Create modeldef create_model():import tensorflow as tfmodel = DeepFMfuse(dnn_units_size=[256, 256, 32])model.compile(loss=tf.keras.losses.binary_crossentropy,optimizer=tf.keras.optimizers.Adam(),metrics=[tf.keras.metrics.AUC(),tf.keras.metrics.Precision(),tf.keras.metrics.Recall(),],)return modelreturn create_model
base_model_dict = {alice: create_base_model_alice(), bob: create_base_model_bob()}
model_fuse = create_fuse_model()
from secretflow.data.vertical import read_csv as v_read_csvvdf = v_read_csv({alice: "alice_ml1m.csv", bob: "bob_ml1m.csv"}, keys="ID", drop_keys="ID"
)
label = vdf["Rating"]data = vdf.drop(columns=["Rating", "Timestamp", "Title", "Zip-code"])
data["UserID"] = data["UserID"].astype("string")
data["MovieID"] = data["MovieID"].astype("string")sl_model = SLModel(base_model_dict=base_model_dict,device_y=bob,model_fuse=model_fuse,
)
history = sl_model.fit(data,label,epochs=5,batch_size=128,random_seed=1234,dataset_builder=data_builder_dict,
)

到这里,我们已经使用隐语提供的deepfm封装完成了movieLens数据集上的推荐任务训练。

总结

我们通过movieLens数据集上的推荐任务来演示了如何通过隐语来实现DeepFM。

1.下载并拆分数据集;

2.定义好数据处理的dataloader;

3.定义好数据预处理的preprocesslayer,定义好dnn结构,调用DeepFMBase,DeepFMFuse来进行模型定义;

4.使用SLModel进行训练,预测,评估即可。

http://www.yayakq.cn/news/802592/

相关文章:

  • 贷款网站模板那些网站可以做文案兼职
  • 基础微网站开发信息android studio中文怎么设置
  • 自己做网站 需要服务器吗新网虚拟主机
  • 温州网站建设成功案例如何查看网站ftp地址
  • 旅游网站建设课程设计先网站开发后软件开发
  • 免费网站推荐货源可以挣钱的网站
  • 广州建网站开发seo型企业网站杭州哪家网站建设好
  • 网站建设功能需求文档中山市做网站实力
  • 商城网站设计公司排名山东网站建设价格实惠
  • 北京好的做网站公司合肥网站关键词优化
  • 嘉兴优化网站价格门户移动网站建设
  • 深圳找个做网站平台的58同城网页版怎么发布信息
  • 建站网站怎么上传代码wordpress qq微信登陆
  • 网站建设公司佛山爱站网官网关键词查询
  • seo排名诊断百度seo工作室
  • 爱站网 关键词挖掘工具站长工具建设部网站官网 下载规范
  • 动易sitefactorycms 网站配置保存不了问题在线捕鱼网站建设
  • 自己想做个网站wordpress 导航 插件
  • wordpress阿里巴巴国际站网页设计与制作教程第2版
  • 沈阳建站多少钱网站建设的内部风险
  • 浙江建设银行官网站纪念币seo单词优化
  • 做ppt的动图下载哪些网站高档网站建设公司
  • wix做网站手机乱了android开发工具排行榜
  • 哪几个网站做acm题目jsp可以做网站首页吗
  • 松江泖港网站建设外贸网站免费建设
  • 巩义便宜网站建设网站不收录怎么办
  • 网站设计师培训中心去长沙旅游攻略
  • 做微商怎样加入网站卖东西赚钱北京3d效果图制作公司
  • 信息课做网站的软件网站服务费算什么费用
  • 重庆设计网站建设厦门网站建设要多少钱