当前位置: 首页 > news >正文

如何做网站的链接结构建站之星模板下载网站

如何做网站的链接结构,建站之星模板下载网站,Muse wordpress,网页制作多少钱一个页面乳腺癌的非侵入性诊断程序涉及体检和成像技术,如乳房X光检查、超声检查和磁共振成像。成像程序对于更全面地评估癌症区域和识别癌症亚型的敏感性较低。 CNN表现出固有的归纳偏差,并且对于图像中感兴趣对象的平移、旋转和位置有所不同。因此,…

乳腺癌的非侵入性诊断程序涉及体检和成像技术,如乳房X光检查、超声检查和磁共振成像。成像程序对于更全面地评估癌症区域和识别癌症亚型的敏感性较低。

CNN表现出固有的归纳偏差,并且对于图像中感兴趣对象的平移、旋转和位置有所不同。因此,通常在训练CNN模型时应用图像增强。


Swin Transformer是视觉转换器的变体,基于非重叠移位窗口的概念,是一种用于各种视觉检测任务的成熟方法。

用于分类任务的VIT实现全局自我注意力,其中计算图像补丁和所有其他补丁之间的关联。这种全局量化导致了关于补丁数量的二次计算复杂性,使得它不太适合处理高分辨率图像。Swin Transformer工作在移位的窗口上,可以提供可变的图像补丁分辨率。

为了高效建模,提出并计算局部窗口内的自注意力,并且以不重叠的方式排列窗口以均匀划分图像。基于窗口的自注意力具有线性复杂性和可扩展性。基于窗口的自注意力的建模能力是有限的,因为它缺乏跨窗口的连接。因此,提出了一种移位窗口分区方法,在连续旋转变压器块的分区配置之间交替进行,以允许跨窗口连接,同时保持非重叠窗口的高效计算。

基于乳房x光检查

在从特定感兴趣区域(ROI)进行分类时,从乳房X光片中考虑的典型特征是肿块大小、ROI的不规则形状、ROI边界的均匀性和组织密度。将这些手工制作的特征输入到支持向量机、k近邻、逻辑回归、二叉决策树和人工神经网络等分类器中进行分类。

基于超声图像检查

超声检查也是非侵入性的,基于机器学习的方法包括基于感兴趣区域的放射性特征,用于使用各种机器学习分类器进行分类。使用希尔伯特变换标记控制分水岭变换提取形状和纹理特征,并将其进一步馈送到KNN分类器和集成决策树模型。

基于组织病理学图像

非侵入性成像程序可能无法识别癌症区域及其亚型。为了弥补这一缺陷,活检被用于更多样化地研究乳腺组织中的恶性肿瘤。活检包括收集样本并在显微镜载玻片上对组织进行染色,以便更好地观察细胞质和细胞核。

BreakHis数据集

BreaKHis数据集由82例患者的乳腺肿瘤手术活检获得的7909张显微RGB图像组成,放大倍率分别为50倍、100倍、200倍和400倍。数据包括良性和恶性亚型。此外,良性癌症亚型包括纤维腺瘤、管状腺瘤、叶状瘤和腺病,而恶性亚型包括导管癌、乳头状癌、小叶癌和粘液性癌。

 Swin Transformer

准备工作

  1. 将700*640的原始图像分辨率调整为224*224
  2. 将输入尺寸为H\times W\times 3的RGB图像将原始的起始补丁大小分割成大小为4*4的小补丁
  3. 每个图象补丁的尺寸为4\times 4\times 3=48
  4. 在大小为48的原始特征张量上应用线性嵌入层,将其投影到特征维度C上

体系结构

  1.  将尺寸为C的补丁线性嵌入上应用几个具有自注意力的Swin Transformer块,保证tokens的数量为\frac{H}{4}\times \frac{W}{4},线性嵌入层与Swin Transformer一起构成Swin Transformer体系结构的第一阶段。
  2. 为了便于分层表示,从Swin Transformer Block架构的第二阶段开始,通过补丁合并层来降低补丁的数量。第二阶段的补丁合并层将每组2*2相邻补丁的特征进行拼接,并在4C维拼接特征上应用线性层。这样可以将补丁的数量减少了4倍,并且将线性层的输出维度为2C,第二阶段的输出补丁数保持在\frac{H}{8}\times \frac{W}{8}
  3. 这样的过程重复两次,构成阶段3和阶段4.导致其输出分辨率分别为\frac{H}{16}\times \frac{W}{16}\frac{H}{32}\times \frac{W}{32}

 \hat{z}^{l}=W-MHSA(LN(z^{l-1}))+z^{l-1}

z^{l}=MLP(LN(\hat{z}^{l}))+\hat{z}^{l}

\hat{z}^{l+1}=SW-MHSA(LN(z^{l}))+z^{l}

z^{l+1}=MLP(LN(\hat{z}^{l+1}))+\hat{z}^{l+1}

模型交叉验证和测试

原始数据集中图像的强度值在0 ~ 255之间,将这些强度缩放为−1和1之间的值。当包含所有缩放因子的图像时,数据集被分为62:8:30分别用于训练、验证和测试。当从特定缩放因子的图像中实现分类时,遵循72:8:20的分割。通过经验选择Swin Transformer的超参数,并使用验证集来确保模型不会过拟合。

http://www.yayakq.cn/news/623637/

相关文章:

  • 网站静态化 好处短视频制作自学教程
  • 对网站建设更新情况的通报百度云登录入口官网
  • 网站kv如何做成都小程序制作工作室
  • 网站建设项目招标公告公司注册公司需要什么资料
  • 企业展示网站建设二级域名网站好不好
  • 公司网站推广技巧动态素材网站
  • 律师事务所网站建设wordpress添加用户注册登录界面
  • 电商网站商品属性设计h5页面网站模板
  • 怎么免费上传网页网站ui设计的流程有哪些步骤
  • 电池外贸一般在哪些网站做网站开发前端框架
  • 创业做招商加盟类网站赚钱乾安网站建设哪家好
  • 网站扫码登录怎么做服务营销理论
  • 免费招工人在哪个网站江苏河海建设有限公司官方网站
  • 建设银行 商户网站打不开0基础学编程先学什么
  • 广州网络帮助建站linux系统
  • ip查询网站提供网站建设优势
  • 云主机怎么上传网站seo教程之关键词是什么
  • 电商网站建设计划书企业邮箱服务
  • 手机版网站建设价格部署WordPress最适合的系统
  • 微网站手机制作网页设计五个页面
  • 北京哪个网站制作公司wordpress首页短代码
  • 知名网站建设策划太平保宝app免费下载二维码
  • 济宁网站建设优化html5响应式网站开发教程
  • 网站开发 接活做一个网站花2万贵吗
  • 赢展网站建设怎么在自己的网站上传视频
  • 免费做网站自助建站wordpress文字环绕广告
  • 怎么做仿制网站中信建设有限责任公司农业事业部
  • 县城房地产网站可以做吗wordpress采集文章后定时发布
  • 江苏省两学一做网站html5 国外网站
  • 企业网站页头背景图邢台关键词优化公司