当前位置: 首页 > news >正文

typecho做网站绿植租摆网站建设

typecho做网站,绿植租摆网站建设,微信定制v怎么弄,黄山做网站公司# 卷积 是用于图像处理 能够保存图像的一些特征 卷积层 如果用全连接神经网络处理图像 计算价格太大了 图像也被转为线性的对象导致失去了图像的空间特征 只有在卷积神经网络cnn的最后一层使用全连接神经网络 # 图像处理的三大任务 # 目标检测 对图像中的目标进行框出来 # 图…

# 卷积 是用于图像处理 能够保存图像的一些特征 卷积层 如果用全连接神经网络处理图像 计算价格太大了 图像也被转为线性的对象导致失去了图像的空间特征 只有在卷积神经网络cnn的最后一层使用全连接神经网络

# 图像处理的三大任务

# 目标检测 对图像中的目标进行框出来

# 图像分割

# 图像分类

# 卷积核的参数是要变的 这个值有个最优解 线性回归求这个最优解

# 卷积的计算 先卷再积 卷 左右上下移动 积 对应位置矩阵 对应位置相乘再相加 最后得到一个特征矩阵跟卷积结果一样的size

# import os

# current_path=os.path.dirname(__file__) #  将脚本文件所在的目录路径赋值给变量 current_path, 所在文件夹路径

# path2=os.path.relpath(路径1) # 获取路径1 文件到当前文件的相对路径

# 在神经网络中加入卷积层 为卷积神经网络 cnn

# cv2读 图像 然后 torch创建卷积核

import os

import cv2

from torch import nn

import torch

import torch.nn.functional as F

import matplotlib.pyplot as plt

def demo1():

    path="assets/1.png"

    # print(path)

    # 读取图像

    img=cv2.imread(path)

    # 创建卷积核 一个卷积核就是卷积层

    conv=nn.Conv2d(in_channels=3,out_channels=1,kernel_size=3,stride=1,padding=0)  # 传入输入图像的通道数 和输出的特征图数量 卷积核大小   步长(卷积核移动的规格) 填充

    # 这个会自动初始化一个卷积和的参数

    # conv(图像tensor数组) 传入图像进行卷积 得到特征图 tensor 的应该为 n,c,h,w 或者c,h,w

    # 传入图像的通道数应该跟in_channels一致 且数据类型为tensor.float

    # 转为tensor,并归一化到[0, 1]  

    img = torch.tensor(img, dtype=torch.float32) / 255.0

   

    # 转换维度

    img=img.permute(2,0,1).unsqueeze(0)

    # print(img.shape)        

    # 卷积

    img=conv(img) # 卷积操作的tensor 必须为float

    # print(img.shape)

    # 用 plt 显示出来

    plt.imshow(img[0][0].detach().numpy(),cmap="gray")

    plt.show()

    pass

def demo2():

    # 一个四通道的图像 通过卷积核处理 这个卷积核应该也有四个通道 对应处理rgba 也可以说是4个卷积核吧 然后 每个通道进行卷积 然后加起来 为一个特征图 输出多个特征图 就要有多个卷积核每个卷积核参数不一样

    # 然后再卷积的话 上面输出的特征图数量就会被下一个卷积和当做通道

    # 如果 一个四通道的卷积核 核大小为3 且有偏置 如果输出32和特征图 那么有 32*4*3*3+32 个参数 特征图数量*每个卷积核的通道数 *卷积核的规格 +偏置数 每一个卷积核对应1个偏置

    # 输出多个特征图 后面每一个特征图 对图像注意的地方不同

    # 边缘填充: 通过上面的卷积计算,我们发现最终的特征图比原始图像要小,如果想要保持图像大小不变, 可在原图周围添加padding来实现。更重要的,边缘填充还更好的保护了图像边缘数据的特征。

    # 让边缘的数据利用更充分 在原图上进行边缘填充

   

    # 卷积结果 特征图的大小的计算 (W-F+2P) / S +1  W:图像的大小 W*W 卷积核大小F*F 边缘填充 P 步长:S 宽高不一样就各自算各自的 宽高 都带一遍公式


 

    pass

# 构建卷积神经网络

def demo3():

    class MyNet(nn.Module):

        def __init__(self, *args, **kwargs):

            super().__init__(*args, **kwargs)

            # 卷积层

            self.conv1=nn.Conv2d(in_channels=1,out_channels=32,kernel_size=3,stride=1,padding=0)

            self.conv2=nn.Conv2d(in_channels=32,out_channels=128,kernel_size=3,stride=1,padding=0)

            self.conv3=nn.Conv2d(in_channels=128,out_channels=512,kernel_size=3,stride=1,padding=0)

            # 线性层 线性层的输入是 特征的数量 特征的总数量是不是 图片数乘图片规格 表示每一个特征图的每个点啊

            self.fc=nn.Linear(512*26*26,10)

        # 前向传播

        def forward(self,x):

            # 每一层用激活函数激活

            x=F.relu(self.conv1(x))

            x=F.relu(self.conv2(x))

            x=F.relu(self.conv3(x))

            # 线性层全连接输出 先展平为2维 因为线性层输入是一个二维的矩阵

            x=x.view(x.shape[0],-1) # x.size(0):这部分获取x的第0维的大小。在PyTorch中,张量的维度通常按照以下顺序表示

            # x.view(x.size(0),-1):这个操作将x重塑为一个新的形状,其中第0维(batch_size)保持不变,而其他维度被“展平”(flattened)为一个长向量。这是在很多神经网络架构中常见的操作,

            # 特别是在将卷积层的输出传递给全连接层(fully connected layer)之前。因为全连接层期望的输入是一个二维张量,其中第一维是批次大小,第二维是每个样本的特征数量。

            return F.softmax(self.fc(x))

    net1=MyNet()

    input=torch.randn(4,1,32,32,dtype=torch.float32)

    output=net1.forward(input)

    print(output)

# 卷积参数共享

# 卷积神经网络只考虑卷积核的参数 以卷积核为单位 全链接 以每一个节点为单位而且还要与上层全链接 参数个数直接爆炸          

# 卷积就是把这些数据放到多个维度上单维度的数量就少了

if __name__=="__main__":

    # demo1()

    # demo2()

    demo3()

    pass

http://www.yayakq.cn/news/487670/

相关文章:

  • 网上做网站资金大概多少建设网站怎么输入分子式
  • 国内知名域名注册网站物流网站html5模板
  • 建设银行网站怎么基本转个人地产网
  • 金塔网站建设电影订票网站怎么做
  • 专业的网站建设服务商网站做任务领q币
  • 北京seo公司网站厦门网络营销公司
  • 宿迁网站建设开发网站建设公司响应式网站模板
  • 怎么建立自己的网站免费想办个网站怎么做
  • 柳州网站建设公司哪家好建站宝盒设置
  • 建设电影会员网站成都网站建设与推广
  • 宁波关键词网站排名免费做的网站怎么设置域名
  • 黄埔网站开发公司媒约网网址是多少
  • 沧州网站艰涩很游戏开发需要学什么编程语言
  • 网站建行接口企业网站ui设计
  • 中小企业建设网站建站教程下载
  • 建站seo怎么赚钱网站收录教程
  • 网站建设开发有什么好处网站怎么做快推广方案
  • 海沧区建设局网站 破路申请内网怎么做网站服务器
  • 青岛建设房地产招聘信息网站猎头公司网站建设
  • 如何网站建设团队南宁网络公司联系方式
  • 2345官方网站国内最好的少儿编程机构排名
  • 网站备案 必须在接入商处中国电信六大外包公司
  • 彩票网站上的走势图是怎么做的景山网站建设
  • seo整站如何优化做se要明白网站
  • php技术的网站开发哪个网站比较好
  • 林州网站制作公司网站怎么做产品图片
  • 藁城区建设局网站社区建设网站
  • 网站建立连接不安全怎么处理用dede做的网站首页
  • 网站搭建制作wordpress所含数据库文件
  • 帮老板做网站wordpress恢复数据