当前位置: 首页 > news >正文

传统文化网站建设方案做电影网站 需要进那些群

传统文化网站建设方案,做电影网站 需要进那些群,销售网站建设怎么样,哈尔滨公共资源信息网相关文章 K近邻算法和KD树详细介绍及其原理详解朴素贝叶斯算法和拉普拉斯平滑详细介绍及其原理详解决策树算法和CART决策树算法详细介绍及其原理详解线性回归算法和逻辑斯谛回归算法详细介绍及其原理详解 文章目录相关文章前言一、线性回归二、逻辑斯谛回归总结前言 今天给大家…

相关文章

  1. K近邻算法和KD树详细介绍及其原理详解
  2. 朴素贝叶斯算法和拉普拉斯平滑详细介绍及其原理详解
  3. 决策树算法和CART决策树算法详细介绍及其原理详解
  4. 线性回归算法和逻辑斯谛回归算法详细介绍及其原理详解

文章目录

  • 相关文章
  • 前言
  • 一、线性回归
  • 二、逻辑斯谛回归
  • 总结


前言

  今天给大家带来的主要内容包括:线性回归算法、逻辑斯谛回归算法。废话不多说,下面就是本文的全部内容了!


一、线性回归

  假设小明现在有一个游戏战队,我们称其为蓝色战队,这支战队队员的游戏手感都比较慢热,在整个游戏比赛期间不同阶段的两个战队的得分情况如下所示:

请添加图片描述

图1:蓝色战队和橙色战队的得分情况
  • 第5min:蓝色战队和橙色战队零十开
  • 第10min:蓝色战队和橙色战队一九开
  • 第20min:蓝色战队和橙色战队五五开
  • 第35min:蓝色战队和橙色战队九一开
  • 第40min:蓝色战队和橙色战队十零开

  由于游戏赛场上的情况变化莫测,作为游戏战队老板的小明想知道在比赛的第26min的时候,蓝色战队和橙色战队几几开呢?或者在比赛的其他时间,蓝色战队和橙色战队又是几几开呢?如果可以得到这样的数据,就可以帮助小明发掘他战队队员的最大潜力了。

请添加图片描述

图2:游戏比赛第26min蓝色战队和橙色战队的得分情况如何?

  为了得到以上信息,我们需要进行计算,在进行计算之前,首先我们要明确,几几开就代表着事情发生的几率,也就是蓝色战队赢下对局和输掉对局可能性的比值。我们把这些几率值列出来:

请添加图片描述

图3:在游戏比赛不同时间段的蓝色战队获胜的概率

  为了方便观察,我们把它转化为小数:

请添加图片描述

图4:将在游戏比赛不同时间段的蓝色战队获胜的概率转换为小数

  根据以上计算结果可以发现,当队伍十分可能输给对面的时候,赢的几率接近于零;当战队非常可能赢的时候,赢得几率接近于正无穷:

请添加图片描述

图5:将在游戏比赛不同时间段的蓝色战队获胜的概率刻画在数轴上

  虽然我们现在可以得到不同比赛时间的蓝色队伍获胜的概率分布情况,但是这种在正半轴十分不对称的分布不太好分析问题,所以我们使用几率的对数来分析数据:

请添加图片描述

图6:将在游戏比赛不同时间段的蓝色战队获胜的概率转换为对数概率

  可以看到,这样就可以把数据从正半轴重新映射回整条数轴上了:

请添加图片描述

图7:将在游戏比赛不同时间段的蓝色战队获胜的概率转换重新刻画在数轴上

  如果我们以对数几率作为yyy轴,比赛时间作为xxx轴,就可以把所有比赛的数据映射到x⋅yx \cdot yxy平面上了:

请添加图片描述

图8:将在整场比赛中的数据映射到x·y平面上

  可以发现,上图就是我们耳熟能详的线性回归。我们都知道,通过每一个点到直线的距离差,然后做一个最小二乘法的优化:
e(w,b)=12∑i=1N∣∣ei∣∣2e(w,b)=\frac{1}{2}\sum_{i=1}^{N}||e_{i}||^{2} e(w,b)=21i=1N∣∣ei2
  利用上式进行最小二乘法的优化后,就可以得到一条最完美的直线来拟合这些数据,得到这条直线之后,我们只需要查询xxx轴所对应的时间,就可以求出赢下这场比赛的可能性了:

请添加图片描述

图9:使用最小二乘法得到对于整场比赛数据的最佳拟合直线

  以上就是对于线性回归的介绍。

二、逻辑斯谛回归

  虽然看起来我们可以得到比赛中不同时间段的蓝色队伍获胜的可能性,但是其中有许多数据点的yyy值是正负无穷,这种情况可是没有办法计算数据和直线的距离误差的:

请添加图片描述

图10:使用直线拟合数据无法计算正负无穷时数据和直线距离误差

  为了解决这个问题,我们可以考虑把这条直线重新映射回概率空间,我们是以对数几率作为yyy轴的,所以yyy的值为:
y=log⁡(p1−p)y = \log(\frac{p}{1-p}) y=log(1pp)
  我们现在要把概率ppp写成yyy的函数,所以等式两边做一个自然对数的幂:
ey=p1−pe^{y}=\frac{p}{1-p} ey=1pp
  然后等式两边同时乘以1−p1-p1p
(1−p)ey=p(1-p)e^{y}=p (1p)ey=p
  把括号展开:
ey−pey=pe^{y}-pe^{y}=p eypey=p
  然后等式两边交换peype^{y}pey
ey=p+peye^{y}=p+pe^{y} ey=p+pey
  这样等式的右面就可以提出公共项ppp
ey=(1+ey)pe^{y}=(1+e^{y})p ey=(1+ey)p
  此时,我们就可以得到ppp的表达式:
p=ey1+eyp=\frac{e^{y}}{1+e^{y}} p=1+eyey
  上式就是逻辑斯谛函数,当我们把直线y=wx+by=wx+by=wx+b的表达式代入到公式中,就得到了概率空间的表达:
p=ewx+b1+ewx+bp=\frac{e^{wx+b}}{1+e^{wx+b}} p=1+ewx+bewx+b
  上式就是逻辑斯谛回归的概率函数,因此,我们可以这样理解,概率空间内的逻辑斯谛回归,其实就是对数几率空间内的线性回归:

请添加图片描述

图11:线性回归和逻辑斯谛回归

  此时,我们已经可以在概率空间中讨论不同比赛时间的蓝色队伍获胜的可能性了:

请添加图片描述

图12:在概率空间讨论不同比赛时间的蓝色队伍获胜的可能性

  既然回到了概率空间,我们就可以使用概率论中的极大似然估计,来得到拟合情况最好的逻辑斯谛曲线。首先,我们假设对于在时间xxx时蓝色队伍赢下比赛的概率为ppp
p(y=1∣x)=pp(y=1|x)=p p(y=1∣x)=p
  那么蓝色队伍在时间xxx时输掉比赛的概率就是1−p1-p1p
p(y=0∣x)=1−pp(y=0|x)=1-p p(y=0∣x)=1p
  因为yyy的值只能取零或一,所以我们可以按照下式来表达任意样本xix_{i}xi的概率:
p(y=?∣xi)=piyi(1−pi)1−yip(y=?|x_{i})=p_{i}^{y_{i}}(1-p_{i})^{1-y_{i}} p(y=?xi)=piyi(1pi)1yi
  使用最大似然估计法得到的似然值就是这些样本概率的乘积:
L=∏i=1Np(y=?∣xi)L=\prod_{i=1}^{N}p(y=?|x_{i}) L=i=1Np(y=?xi)
  我们可以把p(y=?∣xi)=piyi(1−pi)1−yip(y=?|x_{i})=p_{i}^{y_{i}}(1-p_{i})^{1-y_{i}}p(y=?xi)=piyi(1pi)1yi代入到上式中:
L=∏i=1Npiyi(1−pi)1−yiL=\prod_{i=1}^{N}p_{i}^{y_{i}}(1-p_{i})^{1-y_{i}} L=i=1Npiyi(1pi)1yi
  一系列式子的乘积是一个不太容易优化的表达,所以我们取它的对数形式,把乘法转化为加法:
log⁡(L)=∑i=1Nyilog⁡(pi)+(1−yi)log⁡(1−pi)\log (L)=\sum_{i=1}^{N} y_{i} \log \left(p_{i}\right)+\left(1-y_{i}\right) \log \left(1-p_{i}\right) log(L)=i=1Nyilog(pi)+(1yi)log(1pi)
  然后把括号展开整理一下:
log⁡(L)=∑i=1Nyilog⁡pi1−pi+log⁡(1−pi)\log (L)=\sum_{i=1}^{N} y_{i} \log \frac{p_{i}}{1-p_{i}}+\log \left(1-p_{i}\right) log(L)=i=1Nyilog1pipi+log(1pi)
  可以看到,在上式中,等号右面的式子中出现了log⁡pi1−pi\log \frac{p_{i}}{1-p_{i}}log1pipi这个熟悉的身影,这就是之前我们介绍的对数几率,因为逻辑斯谛回归就是对数几率空间内的线性回归,所以我们可以将log⁡pi1−pi\log \frac{p_{i}}{1-p_{i}}log1pipi替换成直线的方程:
log⁡(L)=∑i=1Nyi(wxi+b)+log⁡(1−pi)\log (L)=\sum_{i=1}^{N} y_{i} (wx_{i}+b)+\log \left(1-p_{i}\right) log(L)=i=1Nyi(wxi+b)+log(1pi)
  需要注意的是,上式最后面的pip_{i}pi值就是逻辑斯谛函数,所以我们将逻辑斯谛函数pi=ewxi+b1+ewxi+bp_{i}=\frac{e^{wx_{i}+b}}{1+e^{wx_{i}+b}}pi=1+ewxi+bewxi+b代入上式即可:
log⁡(L)=∑i=1Nyi(wxi+b)−log⁡(1+ewxi+b)\log (L)=\sum_{i=1}^{N} y_{i} (wx_{i}+b)-\log \left(1+e^{wx_{i}+b}\right) log(L)=i=1Nyi(wxi+b)log(1+ewxi+b)
  上式就是我们最终得到的式子,这个式子之和wwwbbb这两个参数相关,我们可以使用最大似然估计优化方法得到最好的wwwbbb这两个参数:
w^,b^=argmaxw,b∑i=1Nyi(wxi+b)−log⁡(1+ewxi+b)\widehat{w}, \widehat{b}=argmax_{w,b}\sum_{i=1}^{N}y_{i}(wx_{i}+b)-\log(1+e^{wx_{i}+b}) w,b=argmaxw,bi=1Nyi(wxi+b)log(1+ewxi+b)
  当我们得到最优的参数wwwbbb的值后,就可以将x=26x=26x=26代入:
p(26)=ew^×26+b^1+ew^×26+b^p(26)=\frac{e^{\widehat{w}\times 26+ \widehat{b}}}{1+e^{\widehat{w}\times 26+ \widehat{b}}} p(26)=1+ew×26+bew×26+b
  这样就可以得到在比赛的第26分钟时,蓝色战队获胜的概率了:

请添加图片描述

图13:通过逻辑斯谛回归计算在比赛的第26min时蓝色队伍获胜的概率

以上就是逻辑斯谛回归的全部过程。


总结

  以上就是本文的全部内容了,这个系列还会继续更新,给大家带来更多的关于机器学习方面的算法和知识,下篇博客见!

http://www.yayakq.cn/news/510647/

相关文章:

  • 网站html地图怎么做食品企业网站模板
  • 网站推广的方法及特点济源网站建设济源
  • 广州网站设计公司济南兴田德润o简介图片哪个浏览器任何网站都可以访问
  • 小白建设论坛网站培训机构前端开发
  • 为什么要建设应急管理网站网站时间轴
  • 昆山网站建设详细方案网站建设策划书的心得
  • php网站开发路线室内装修设计图片欣赏
  • asp网站整站下载器wordpress 解压
  • 微信网站平台怎么建立响应式网站模板 金融
  • 站长工具2023最新国产业绩统计网站开发
  • 做拆分盘网站做网站看什么书好
  • 宜昌市高新区建设局网站网上视频教程怎么制作
  • 山西网站开发培训php做一个网站
  • 网站建设公司专业网站开发需求买网站主机
  • 种子网站开发多少钱淘宝店做网站建设不能开直通车
  • 大连专业网站设计服务商抓取关键词的软件
  • 小米企业网站的优化建议国内专业网站建设
  • 3合一网站怎么做网站建设评审标准
  • 青岛开发区网站制作站开发技术培训
  • 做竞价的网站需要做外部链接吗怎么开发游戏
  • 贸易网站建设公司做个人网站到哪里做
  • 请网站制作公司费用二维码图片生成器在线制作
  • 门户网站安全建设dns服务器 域名不存在时 跳转到指定网站
  • 足彩网站怎样做推广中山免费建网站
  • 网站营销 海外国外设计搜索网站
  • 朔州网站建设价格低泰安房产信息网官网
  • 企业手机微网站系统php北京海淀区区号
  • 江苏网站推广公司哪家好福州建站模板
  • 电子商务网站建设自建团队深圳网站优化公司哪家好
  • 成都网站建设木木科技辽宁省城乡建设网站