当前位置: 首页 > news >正文

网站开发职业前景公共化网站建设方案

网站开发职业前景,公共化网站建设方案,小刘网站建设,查淘宝关键词排名软件目标 背影 BP神经网络的原理 BP神经网络的定义 BP神经网络的基本结构 BP神经网络的神经元 BP神经网络的激活函数, BP神经网络的传递函数 数据 神经网络参数 基于BP神经网络 性别识别的MATLAB代码 效果图 结果分析 展望 背影 男人体内蛋白质比例大,女生…

目标
背影
BP神经网络的原理
BP神经网络的定义
BP神经网络的基本结构
BP神经网络的神经元
BP神经网络的激活函数,
BP神经网络的传递函数
数据
神经网络参数
基于BP神经网络 性别识别的MATLAB代码
效果图
结果分析
展望

背影

男人体内蛋白质比例大,女生脂肪比例大,而蛋白质密度比脂肪大,因此相同体积的男生比女生重。身高和体重和性别具有相关性,通过身高和体重,可以一定程度判断性别,本文用BP神经网络,以身高、体重为输入因子,以性别为输出,进行建模,训练测试,达到识别性别的目的

BP神经网络的原理

BP神经网络的定义

人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。

BP神经网络的基本结构

基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

bp神经网络的神经元

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络由多个神经元构成,下图就是单个神经元的图1所示:
在这里插入图片描述
。。。。。。。。。。。。。。。。。。。。。。。。图1 ,神经元模型

bp神经网络激活函数及公式

在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/29edde342c3945939ad5945145ca8509.png在这里插入图片描述

BP神经网络传递函数及公式

图2是Sigmoid函数和双极S函数的图像,其中Sigmoid函数的图像区域是0到1,双极S函数的区间是正负1,归一化的时候要和传递函数的区域相对应,不然,可能效果不好
神经网络就是将许多个单一的神经元联结在一起,这样,一个神经元的输出就可以是另一个神经元的输入。
例如,下图就是一个简单的神经网络:在这里插入图片描述
在这里插入图片描述

基于BP神经网络的性别识别

基本模型通过

通过采集的男女生身高和体重,进行BP神经网络建模,以身高 和体重为输入变量,以性别为输出变量,进行训练和测试,实现BP神经网络的性别识别

数据

在这里插入图片描述

神经网络参数

三层神经网络,传递函数logsig , tansig,训练函数自适应动量因子梯度下降函数,学习率0.01,学习目标0.001,最大迭代次数100

MATLAB编程代码

clc
clear
close all
%% 读入数据
xlsfile=‘student.xls’;
[data,label]=getdata(xlsfile);

num = [data label];
m=200;
n = randperm(size(num,1));
input_train=num(n(1:m),1:2)‘;
%训练数据的输入数据
output_train=num(n(1:m),3)’;
%训练数据的输出数据
input_test=num(n(m+1:end),1:2)‘;
%测试数据的输入数据
output_test=num(n(m+1:end),3)’;
%测试数据的输出数据
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
%训练数据的输入数据的归一化
[outputn,outputps]=mapminmax(output_train);
%训练数据的输出数据的归一化de
%% BP网络训练
% %初始化网络结构
net=newff(minmax(inputn),[12,1],{‘logsig’,‘tansig’},‘trainlm’);
%net.trainParam.max_fail = 9;
net.trainParam.epochs=2000;
%最大迭代次数
net.trainParam.lr=0.01;
%学习率
net.trainParam.goal=0.0001;
%学习目标
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化

inputn_test=mapminmax(‘apply’,input_test,inputps);

%网络预测输出
an=sim(net,inputn_test);

%网络输出反归一化
BPoutput=round(mapminmax(‘reverse’,an,outputps));

%% 结果分析
figure(1)
plot(BPoutput(1,:),‘ro’)
%预测的结果数据画图-代表虚线,O代表圆圈标识,r代表红色
hold on
plot(output_test(1,:),‘k*’);
%期望数据,即真实的数据画图,-代表实现,就是代表的标识,k代表黑色
legend(‘预测输出’,‘期望输出’)%标签
title(‘BP神经网络测试效果’,‘fontsize’,12)%标题 字体大小为12
ylabel(‘类别’,‘fontsize’,12)%Y轴
xlabel(‘样本’,‘fontsize’,12)%X轴
set(gca,‘YTick’,1:2)
set(gca,‘YTickLabel’,{‘男’,‘女’})
ylim([0.8 2.2])

%预测误差
error=BPoutput-output_test;
figure
plot(error(1,:),‘-*’)
title(‘BP网络预测试误差’,‘fontsize’,12)
ylabel(‘误差’,‘fontsize’,12)
xlabel(‘样本’,‘fontsize’,12)

效果图

在这里插入图片描述

在这里插入图片描述

结果分析

从效果图上看,BP神经网络能很好的实现对性别的识别,BP神经网络是一种成熟的神经,相对于其他神经网络,拥有很多的训练函数,传递函数,可以调节的参数非常多,对各种问题都可以达到一个比较理想的效果,关键看如何调试参数,选择训练传递函数,有疑问或者其他应用方面,欢迎大家扫描下面的二维码

展望

针对神经网络供工具箱,可以自己写函数的代入并原本的工具箱函数,可以有很多种改进方法

http://www.yayakq.cn/news/32443/

相关文章:

  • 广州做啊里巴巴网站多少钱网站建设滨江
  • 苏州模板网站专业设计邢台列表网
  • 学生怎么做网站网站建设有关要求
  • 做视频素材怎么下载网站歌尔股份砍单
  • 推广的网站需要备案吗网站建设需要提供什么资料
  • 找人做任务网站有哪些手机网站设计标准
  • 中国站长之家网站武隆网站建设哪家好
  • 建站模板网站设计新建门户网站的建设自查
  • 网站制作费用低鄂州市城市建设档案馆网站
  • 有园林案例的网站环保局网站设计方案
  • 北京网站建设公司黄页一般通过是什么梗
  • 沈阳建设工程信息网官网新网站安平网站建设培训
  • my最新域名是什么北京seo代理商
  • 网站建设常用的6大布局加代码查排名官网
  • 网站建设相关的网站网站开发教程pdf
  • 网站制作多久网站app免费下载软件大全
  • 网页制作与设计站点应该怎么建推动高质量发展的最终目的是什么
  • 网站架构包括哪些网站策划和运营
  • 苏州网站seo服务建设局网站作用
  • 区块链网站建设wordpress主题视频站
  • wordpress网站如何迁移中国搜索引擎大全
  • 中职网站建设与维护考试题做网站手机端需要pc端的源代码吗
  • 知名的网站建设搜索引擎优化怎么做
  • 南宁建设网站培训网站下载的wordpress模板如何添加
  • 南通网站制作系统网站建设步骤列表图片
  • 国外开源网站系统WordPress 付费文章插件
  • 公众号做图网站做网站维护有前途吗
  • 佛山营销网站建设服务公司中国林业建设协会网站
  • php网站制作实例教程可以用足球做的游戏视频网站
  • 临海网站建设公司请人做网站多少钱