当前位置: 首页 > news >正文

你会怎么做外国的网站成都青白江网站建设

你会怎么做外国的网站,成都青白江网站建设,葫芦岛建设网站,安卓系统app开发公司流程 读取数据 original_data pd.read_csv(“Penguins.csv”) original_data.head() 评估和清理数据 cleaned_data original_data.copy() #备份 结构 original_data.sample(5) 数据符合“每个变量为一列,每个观察值为一行,每种类型的观察单位为一…

流程

读取数据

original_data = pd.read_csv(“Penguins.csv”)
original_data.head()

评估和清理数据

cleaned_data = original_data.copy() #备份

结构

original_data.sample(5)
数据符合“每个变量为一列,每个观察值为一行,每种类型的观察单位为一个表格”,才不存在结构性问题。

内容

更改数据类型

cleaned_data[“sex”]=cleaned_data[“sex”].astype(“category”)——把分类变量从object变成category

空缺值

cleaned_data.info()——了解大概哪列缺,缺多少
cleaned_data[cleaned_data[“culmen_length_mm”].isnull()]——提取缺失值对应的行

cleaned_data.drop(3, inplace=True)——缺失得太厉害,没有价值的行直接删除。
缺失性别变量的观察值具备其它数据,仍然可以为分析提供价值。由于Pandas以及Matplotlib、Seaborn会自动忽略缺失值,可以保留这些行。

重复值

**根据数据变量的含义以及内容来看,允许变量重复,**我们不需要对此数据检查是否存在重复值。

什么是不能重复的?比如学号。

不一致数据

重点检查分类变量
cleaned_data[“sex”].value_counts()

sex列里存在一个英文句号值,并不代表任何有效性别,我们应当把该值替换为NaN空值。
cleaned_data[‘sex’] = cleaned_data[‘sex’].replace(“.”, np.nan)

脱离实际的数据

cleaned_data.describe()
从以上统计信息来看,cleaned_house_price里不存在脱离现实意义的数值。

数据可视化探索

sns.set_palette(“pastel”) #设置图表色盘为"pastel"

单个分类变量——饼图

species_count = cleaned_data[“species”].value_counts() #统计类别对应的个数
plt.pie(species_count,labels=species_count.index,autopct=“%.1f%%”) #标签就用统计生成的标签索引

可以看出比例分布。

两两分类变量——countplot+hue颜色分类

sns.countplot(data=cleaned_data, x=“island”, hue=“species”)
可以显示不同岛上的企鹅种类数量。

数值变量之间的关系——pairplot

sns.pairplot(cleaned_data)
如果要根据种类进行细分:
sns.pairplot(cleaned_data, hue=‘species’)

补充

.astype()

在这里插入图片描述
astype() 参数:目标数据类型。
返回一个新的 Series(如果是对 DataFrame 的某一列操作)或 DataFrame(如果是对整个 DataFrame 操作),其数据类型已经按照指定的参数进行了转换。原始的 Series 或 DataFrame 并不会被直接修改。

三种赋值方式

cleaned_data = original_data:纯引用赋值
并没有创建一个新的对象,而是让 cleaned_data 和 original_data 指向内存中的同一个对象。也就是说,这两个变量实际上是同一个对象的不同名称。

cleaned_data = original_data.copy():浅拷贝
浅拷贝会创建一个新的对象,但是如果原对象中的元素是可变对象(如列表、字典等),它只会复制引用。也就是说,那么新对象和原对象中的这些可变元素仍然会指向同一个内存地址。
当你修改 cleaned_data 中的子列表时,original_data 中的对应子列表也会被修改。

cleaned_data = original_data.copy(deep=True):深拷贝
深拷贝会递归地复制对象及其所有嵌套的对象,创建一个完全独立的新对象,它们在内存中没有任何共享的部分。
当你修改 cleaned_data 中的子列表时,original_data 不会受到影响。

综上,简单赋值只是创建引用,浅拷贝复制对象结构但共享嵌套的可变对象,而深拷贝则创建一个完全独立的副本。

在原数据中删除行

cleaned_data.drop([3,339], inplace=True)等价于cleaned_data = cleaned_data.drop([3,339])
当使用 inplace=True 时,drop 方法会直接在原 DataFrame 上进行修改,不会返回新的对象。

替换元素

replace 是 pandas 中 Series 和 DataFrame 对象都有的一个方法,其作用是将指定的值替换为其他值。
第一个参数 “.” 表示要被替换的值,
第二个参数 np.nan 是 NumPy 库中的 NaN值。所以cleaned_data[‘sex’] = cleaned_data[‘sex’].replace(“.”, np.nan)的意思是把 cleaned_data[‘sex’] 列中所有值为 “.” 的元素替换为 NaN。

饼图

plt.pie(species_count,labels=species_count.index,autopct=“%.1f%%”)
labels不仅可以传Series,还可以传列表等其它可迭代对象。所以这里直接用species_count

配对图

sns.pairplot(data=cleaned_data,hue=“species”,kind=“reg”, plot_kws={‘scatter_kws’:{‘alpha’:0.3}}) #对种类细分,并增加回归线,修改点的透明度

**kind 参数用于指定非对角线子图(即散点图)的绘制类型。**设置为 “reg” 表示在散点图的基础上添加线性回归拟合线。这样可以帮助我们直观地观察变量之间的线性关系趋势。默认值是kind=“scatter”。

plot_kws={‘scatter_kws’:{‘alpha’:0.3}}
plot_kws 是一个字典类型的参数,用于传递额外的绘图选项,这些选项会被应用到所有的子图上。
其中 ‘scatter_kws’ 是 plot_kws 字典中的一个键,它对应的值也是一个字典,专门用于设置散点图的相关属性。

‘alpha’: 0.3 是 scatter_kws 字典中的一个键值对,alpha 表示透明度,取值范围是 0 到 1,0 表示完全透明,1 表示完全不透明。这里设置为 0.3,意味着散点图中的数据点会有一定的透明度,当数据点比较密集时,使用较低的透明度可以避免数据点相互遮挡,更清晰地展示数据的分布情况。单个散点图直接加上’alpha’: 0.3参数就好。
在这里插入图片描述

http://www.yayakq.cn/news/883566/

相关文章:

  • 网站建设的公司业务网站做好了怎么上线
  • 深圳建网站哪家公司好根域名服务器
  • 如何用网页制作网站如何做游戏试玩网站
  • 建设网站员工招聘策划vps 网站上传
  • 做章的网站html代码快捷键
  • 8848网站盈利模式wordpress做小说网站
  • 西安网站制作排名郑州经济技术开发区招教
  • wordpress整站搬家教程投资公司注册需要多少钱
  • 整站排名优化公司wordpress邮件服务器
  • 截获网站流量怎么做开发公司出纳收款制度
  • 百度搜索网站介绍平台怎么推广技巧
  • 北京智能网站建设哪里有淘宝关键词查询
  • 如何用博客网站做cpa肥城网站制作
  • 电商网站建设简单代码网页二十四个关键词
  • 网站建设中 尽情期待wordpress id不连续
  • 营销推广网站推广方案惠州企业建站程序
  • 怎么提高网站关键词排名想开发一个网站需要怎样做
  • 学校门户网站建设报告西安计算机培训机构排名前十
  • 那个网站可以帮助做数学题wordpress登录微信插件下载
  • 广州联享品牌网站建设网站建设网站服务
  • 天津市建设工程协会网站公司做网站比较好的
  • 网站推广专业网站 建设理由
  • 做旅游网站的引言html怎么做成网站
  • 营销网站建设视频萨隆wordpress
  • 设计网站页面网站访客统计代码
  • 自己建网站怎么推广瑞安企业网站建设
  • 网站如何做数据库好的版式设计网站
  • 用vs做网站厦门seo网站管理
  • 重庆制作网站模板建站公司建设网站公司哪里好相关的热搜问题解决方案
  • 网站后台密码怎么改钢材进销存管理软件