当前位置: 首页 > news >正文

济南微信网站简单的营销自动化

济南微信网站,简单的营销自动化,广告传媒,广州花都区前言 整体评价 T4感觉有简单的方法&#xff0c;无奈树形DP一条路上走到黑了&#xff0c;这场还是有难度的。 T1. 超过阈值的最少操作数 I 思路: 模拟 class Solution {public int minOperations(int[] nums, int k) {return (int)Arrays.stream(nums).filter(x -> x <…

前言

image.png


整体评价

T4感觉有简单的方法,无奈树形DP一条路上走到黑了,这场还是有难度的。


T1. 超过阈值的最少操作数 I

思路: 模拟

class Solution {public int minOperations(int[] nums, int k) {return (int)Arrays.stream(nums).filter(x -> x < k).count();}
}

T2. 超过阈值的最少操作数 II

思路: 模拟

按题意模拟即可,需要注意int溢出问题就行。

class Solution {public int minOperations(int[] nums, int k) {PriorityQueue<Long> pq = new PriorityQueue<>();for (long num : nums) {pq.offer(num);}int ans = 0;while (pq.peek() < k) {long x = pq.poll(), y = pq.poll();pq.offer(Math.min(x, y) * 2 + Math.max(x, y));ans++;}return ans;}
}

T3. 在带权树网络中统计可连接服务器对数目

思路: 枚举 + dfs/bfs + 组合数学

因为树的点数n( n ≤ 1000 n\le1000 n1000), 所以枚举点,从该点进行dfs/bfs,然后对每个分支进行组合统计。

组合统计的核心

点 u 出发的各个分支满足整除的数,组合序列为 c 0 , c 1 , c 2 , c 3 , . . . , c m 点u出发的各个分支满足整除的数,组合序列为 c_0, c_1, c_2, c_3, ..., c_m u出发的各个分支满足整除的数,组合序列为c0,c1,c2,c3,...,cm

其 s = ∑ i = 0 i = m c i 其 s = \sum_{i=0}^{i=m} c_i s=i=0i=mci

结果为 r e s [ u ] = ( ∑ i = 0 i = m c i ∗ ( s − c i ) ) / 2 结果为 res[u] = (\sum_{i=0}^{i=m} c_i * (s - c_i)) / 2 结果为res[u]=(i=0i=mci(sci))/2

这样时间复杂度为 O ( n 2 ) O(n^2) O(n2), 是可以接受的。

class Solution {List<int[]> []g;int signalSpeed;// fa是阻断点int bfs(int u, int w, int fa) {int res = 0;boolean[] vis = new boolean[g.length];Deque<int[]> deq = new ArrayDeque<>();vis[u] = true;deq.offer(new int[] {u, w});if (w % signalSpeed == 0) {res ++;}while (!deq.isEmpty()) {int[] cur = deq.poll();int p = cur[0];int v = cur[1];for (int[] e: g[p]) {if (e[0] == fa) continue;if (vis[e[0]]) continue;if ((v + e[1]) % signalSpeed == 0) res++;deq.offer(new int[] {e[0], v + e[1]});vis[e[0]] = true;}}return res;}public int[] countPairsOfConnectableServers(int[][] edges, int signalSpeed) {int n = edges.length + 1;g = new List[n];Arrays.setAll(g, x->new ArrayList<>());this.signalSpeed = signalSpeed;for (int[] e: edges) {g[e[0]].add(new int[] {e[1], e[2]});g[e[1]].add(new int[] {e[0], e[2]});}int[] res = new int[n];for (int i = 0; i < n; i++) {int sum = 0;List<Integer> lists = new ArrayList<>();for (int[] e: g[i]) {int tmp = bfs(e[0], e[1], i);lists.add(tmp);sum += tmp;}int tot = 0;for (int j = 0; j < lists.size(); j++) {tot += lists.get(j) * (sum - lists.get(j));}res[i] = tot / 2;}return res;}}

如果该题把n变成 n ≤ 1 0 5 n\le10^5 n105, 那该如何解呢?

感觉换根 D P 可行,但是需要限制 s i g n a l S p e e d 范围在 100 之内 , 这样可控制在 O ( 1 0 7 ) 感觉换根DP可行,但是需要限制 signalSpeed 范围在100之内, 这样可控制在O(10^7) 感觉换根DP可行,但是需要限制signalSpeed范围在100之内,这样可控制在O(107)

如果signalSpeed很大,感觉没辙啊。


T4. 最大节点价值之和

思路: 树形DP

树形DP的解法更加具有通用性,所以比赛就沿着这个思路写。

如果操作不是异或,那这个思路就更有意义 如果操作不是异或,那这个思路就更有意义 如果操作不是异或,那这个思路就更有意义

对于任意点u, 其具备两个状态。

d p [ u ] [ 0 ] , d p [ u ] [ 1 ] , 表示参与和没有参与异或下的以 u 为根节点的子树最大和。 dp[u][0], dp[u][1], 表示参与和没有参与异或下的以u为根节点的子树最大和。 dp[u][0],dp[u][1],表示参与和没有参与异或下的以u为根节点的子树最大和。

那么其转移方程,其体现在当前节点u和其子节点集合S( v ∈ u 的子节点 v\in u的子节点 vu的子节点)的迭代递推转移。

class Solution {int k;int[] nums;List<Integer>[]g;long[][] dp;void dfs(int u, int fa) {// 该节点没参与, 该节点参与了long r0 = nums[u], r1 = Long.MIN_VALUE / 10;for (int v: g[u]) {if (v == fa) continue;dfs(v, u);long uRev0 = r0 + (nums[u]^k) - nums[u];long uRev1 = r1 - (nums[u]^k) + nums[u];long vRev0 = dp[v][0] + (nums[v]^k) - nums[v];long vRev1 = dp[v][1] - (nums[v]^k) + nums[v];long x0 = Math.max(r0 + Math.max(dp[v][0], dp[v][1]),Math.max(uRev1 + vRev1, uRev1 + vRev0));long x1 = Math.max(r1 + Math.max(dp[v][1], dp[v][0]),Math.max(uRev0 + vRev0, uRev0 + vRev1));r0 = x0;r1 = x1;}dp[u][0] = r0;dp[u][1] = r1;}public long maximumValueSum(int[] nums, int k, int[][] edges) {int n = nums.length;this.g = new List[n];this.nums = nums;this.k = k;this.dp = new long[n][2];Arrays.setAll(g, x -> new ArrayList<>());for (int[] e: edges) {g[e[0]].add(e[1]);g[e[1]].add(e[0]);}dfs(0, -1);return Math.max(dp[0][0], dp[0][1]);}
}
class Solution:def maximumValueSum(self, nums: List[int], k: int, edges: List[List[int]]) -> int:n = len(nums)g = [[] for _ in range(n)]for e in edges:g[e[0]].append(e[1])g[e[1]].append(e[0])dp = [[0] * 2 for _ in range(n)]def dfs(u, fa):r0, r1 = nums[u], -0x3f3f3f3f3ffor v in g[u]:if v == fa:continuedfs(v, u)uRev0 = r0 + (nums[u]^k) - nums[u];uRev1 = r1 - (nums[u]^k) + nums[u];vRev0 = dp[v][0] + (nums[v]^k) - nums[v];vRev1 = dp[v][1] - (nums[v]^k) + nums[v];t0 = max(r0 + max(dp[v][0], dp[v][1]), max(uRev1 + vRev0, uRev1 + vRev1))t1 = max(r1 + max(dp[v][0], dp[v][1]), max(uRev0 + vRev0, uRev0 + vRev1))r0, r1 = t0, t1dp[u][0], dp[u][1] = r0, r1dfs(0, -1)return max(dp[0][0], dp[0][1])

由于异或的特点,所以这题可以抛弃边的束缚。

任意两点 u , v ,可以简单构造一条路径,只有端点 ( u , v ) 出现 1 次,其他点都出现 2 次 任意两点u,v,可以简单构造一条路径,只有端点(u,v)出现1次,其他点都出现2次 任意两点u,v,可以简单构造一条路径,只有端点(u,v)出现1次,其他点都出现2

异或涉及边的两点,因此异或的点必然是偶数个,这是唯一的限制.

class Solution {public long maximumValueSum(int[] nums, int k, int[][] edges) {long sum = 0;PriorityQueue<Long> pq = new PriorityQueue<>(Comparator.comparing(x -> -x));for (int v: nums) {pq.offer((long)(v ^ k) - v);sum += v;}while (pq.size() >= 2) {long t1 = pq.poll();long t2 = pq.poll();if (t1 + t2 > 0) {sum += t1 + t2;} else {break;}}return sum;}
}
class Solution:def maximumValueSum(self, nums: List[int], k: int, edges: List[List[int]]) -> int:s = sum(nums)arr = [(v ^ k) - v for v in nums]arr.sort(key=lambda x: -x)n = len(nums)for i in range(0, n, 2):if i + 1 < n and arr[i] + arr[i + 1] > 0:s += arr[i] + arr[i + 1]return s

写在最后

image.png

http://www.yayakq.cn/news/813086/

相关文章:

  • 德州极速网站建设 小程序巴中建设网站
  • 建设国家游戏网站品牌宣传策划公司
  • 徐州网站建设电话世界上第二大互联网公司是
  • 徐州建设局网新网站白沙网站建设的基本情况
  • 网站建立前期调查智加设计
  • 关于网站建设管理的规定当当网网站建设方案
  • 做一个国外网站开发手机端网站模板下载
  • 做网站技术员交易网站模板
  • 柳州市建设投资开发公司网站做网站商城项目的流程
  • 大学生网站建设策划书范文教育企业重庆网站建设
  • step7用法fc州网站建设wordpress 杂志 主题
  • 淮安网站建设找谁好wordpress 实用插件
  • 国内购物网站大全南通制作企业网站
  • 网站几个页面营销网站的例子
  • 邯郸网站开发公司电话微网站建设平台
  • 资兴市网站建设服务商网站建设硬件环境
  • 网站怎么做支付系统办公室装修合同范本
  • 营销型网站推广丽水公司做网站
  • 学做网站的视频网站建设与制作石家庄
  • 企业网站改版建议企业vi包括哪些内容
  • 网站留言程序怎么做桂林两江四湖游船路线
  • 建设网站需要学什么网站广告条效果
  • 手机网站懒人模板如何小企业网站建设
  • 微网站开发费用做商业网站赚钱吗
  • 网站上线 串词海口建站平台
  • python php网站开发创新建设资金网站
  • 做网站的五要素网页设计与制作课本电子版
  • 织梦网站定时网络营销推广方式2021
  • 外贸怎么做站外推广本地化网站建设
  • 免费网站推荐软件微信公众号模板素材