当前位置: 首页 > news >正文

湛江做网站苏州厂商怎样进行网站推广

湛江做网站苏州厂商,怎样进行网站推广,如何建设一个专业的网站,网站怎么做微信扫描登录网站☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 Pytorch与Keras介绍 Pytorch 模型定义 模型编译 模型训练 输入格式 完整代码 Keras 模型定义 模型编译 模型训练 输入格式 完整代…

  

☁️主页 Nowl

🔥专栏《机器学习实战》 《机器学习》

📑君子坐而论道,少年起而行之 

文章目录

Pytorch与Keras介绍

Pytorch

模型定义

模型编译

模型训练

输入格式

完整代码

Keras

模型定义

模型编译

模型训练

输入格式

完整代码

区别与使用场景

结语


Pytorch与Keras介绍

pytorch和keras都是一种深度学习框架,使我们能很便捷地搭建各种神经网络,但它们在使用上有一些区别,也各自有其特性,我们一起来看看吧

Pytorch

模型定义

我们以最简单的网络定义来学习pytorch的基本使用方法,我们接下来要定义一个神经网络,包括一个输入层,一个隐藏层,一个输出层,这些层都是线性的,给隐藏层添加一个激活函数Relu,给输出层添加一个Sigmoid函数

import torch
import torch.nn as nnclass SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(1, 32)self.relu = nn.ReLU()self.fc2 = nn.Linear(32, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):x = self.fc1(x)x = self.relu(x)x = self.fc2(x)x = self.Sigmoid(x)return x

模型编译

我们在之前的机器学习文章中反复提到过,模型的训练是怎么进行的呢,要有一个损失函数与优化方法,我们接下来看看在pytorch中怎么定义这些

import torch.optim as optim# 实例化模型对象
model = SimpleNet()
# 定义损失函数
criterion = nn.MSELoss()# 定义优化器
learning_rate = 0.01
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

我们上面创建的神经网络是一个类,所以我们实例化一个对象model,然后定义损失函数为mse,优化器为随机梯度下降并设置学习率

模型训练

# 创建随机输入数据和目标数据
input_data = torch.randn((100, 1))  # 100个样本,每个样本有1个特征
target_data = torch.randn((100, 1))  # 100个样本,每个样本有1个目标值# 训练模型
epochs = 100for epoch in range(epochs):# 前向传播output = model(input_data)# 计算损失loss = criterion(output, target_data)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

以上步骤是先创建了一些随机样本,作为模型的训练集,然后定义训练轮次为100次,然后前向传播数据集,计算损失,再优化,如此反复

输入格式

关于输入格式是很多人在实战中容易出现问题的,对于pytorch创建的神经网络,我们的输入内容是一个torch张量,怎么创建呢

data = torch.Tensor([[1], [2], [3]])

很简单对吧,上面这个例子创建了一个torch张量,有三组数据,每组数据有1个特征

我们可以把这个数据输入到训练好的模型中,得到输出结果,如果输出不是torch张量,代码就会报错

完整代码

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的神经网络模型
class SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(1, 32)self.relu = nn.ReLU()self.fc2 = nn.Linear(32, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):x = self.fc1(x)x = self.relu(x)x = self.fc2(x)x = self.sigmoid(x)return xmodel = SimpleNet()
criterion = nn.MSELoss()# 定义优化器
learning_rate = 0.01
optimizer = optim.SGD(model.parameters(), lr=learning_rate)# 创建随机输入数据和目标数据
input_data = torch.randn((100, 1))  # 100个样本,每个样本有1个特征
target_data = torch.randn((100, 1))  # 100个样本,每个样本有1个目标值# 训练模型
epochs = 100for epoch in range(epochs):# 前向传播output = model(input_data)# 计算损失loss = criterion(output, target_data)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()data = torch.Tensor([[1], [2], [3]])
prediction = model(data)print(prediction)

可以看到模型输出了三个预测值

注意,这个任务本身没有意义,因为我们的训练集是随机生成的,这里主要学习框架的使用方法

Keras

我们在这里把和上面相同的神经网络结构使用keras框架实现一遍

模型定义

from keras.models import Sequential
from keras.layers import Densemodel = Sequential([Dense(32, input_dim=1, activation='relu'),Dense(1, activation='sigmoid')
])

注意这里也是一层输入层,一层隐藏层,一层输出层,和pytorch一样,输入层是隐式的,我们的输入数据就是输入层,上述代码定义了一个隐藏层,输入维度是1,输出维度是32,还定义了一个输出层,输入维度是32,输出维度是1,和pytorch环节的模型结构是一样的 

模型编译

那么在Keras中模型又是怎么编译的呢

model.compile(loss='mse', optimizer='sgd')

非常简单,只需要这一行代码 ,设置损失函数为mse,优化器为随机梯度下降

模型训练

模型的训练也非常简单

# 训练模型
model.fit(input_data, target_data, epochs=100)

 因为我们已经编译好了损失函数和优化器,在fit里只需要输入数据,输出数据和训练轮次这些参数就可以训练了

输入格式

对于Keras模型的输入,我们要把它转化为numpy数组,不然会报错

data = np.array([[1], [2], [3]])

完整代码

from keras.models import Sequential
from keras.layers import Dense
import numpy as np# 定义模型
model = Sequential([Dense(32, input_dim=1, activation='relu'),Dense(1, activation='sigmoid')
])# 创建随机输入数据和目标数据
input_data = np.random.randn(100, 1)  # 100个样本,每个样本有10个特征
target_data = np.random.randn(100, 1)  # 100个样本,每个样本有5个目标值# 编译模型
model.compile(loss='mse', optimizer='sgd')
# 训练模型
model.fit(input_data, target_data, epochs=10)data = np.array([[1], [2], [3]])prediction = model(data)
print(prediction)

可以看到,同样的任务,Keras的代码量小很多

区别与使用场景

Keras代码量少,使用便捷,适用于快速实验和快速神经网络设计

而pytorch由于结构是由类定义的,可以更加灵活地组建神经网络层,这对于要求细节的任务更有利,同时,pytorch还采用动态计算图,使得模型的结构可以在运行时根据输入数据动态调整,但这个特点我还没有接触到,之后可能会详细讲解

结语

Keras和Pytorch都各有各的优点,请读者根据需求选择,同时有些深度学习教程偏向于使用某一种框架,最好都学习一点,以适应不同的场景

 

感谢阅读,觉得有用的话就订阅下本专栏吧 

http://www.yayakq.cn/news/799285/

相关文章:

  • 做爰动态视频网站深圳注册公司流程和费用
  • 做淘宝网站如何提取中间的提成网站怎么推广怎么做的
  • 共创福州网站建设网站子域名怎么设置
  • 开发青年网站广告图片素材
  • dede生成网站地图子主题wordpress插件
  • 小公司怎么做免费网站如何做手机网页
  • asp网站部署 iis7网站建设评价
  • 网站教育培训机构企业网络营销策划平台
  • 长沙网站搭建seo哈尔滨网站建设公司哪家好
  • 长春网站建设多少钱牡丹区住房和城乡建设局网站
  • 网站制作哪里好薇系统网站有哪些
  • 苏州建网站的公司相册制作软件app
  • 安徽建站模板石家庄企业名录大全
  • 浙江网站建设推广公司创意交易平台官网
  • 门户网站 建设 如何写WordPress文章固定连接html
  • 怎么看网站用什么平台做的网站建设国内外研究进展
  • 写的网站怎么做接口企业静态网站
  • 网站的推广方法北京公司黄页大全
  • dw8做网站步骤图长春专业网站建设价格
  • vs2013怎么做网站杭州网络公司服务
  • 海淘一号 网站 怎么做的做彩票网站都是怎么拉人的
  • 建设银行网站招聘官网wordpress标题转英文
  • 网站开发脚本语言论坛网站建设多少钱
  • 上海网站建设平台站霸网络中国网络营销公司排名
  • 郑州网站开发哪家好论坛建站教程
  • cms网站群832网络销售平台
  • 房屋设计公司品牌排行外贸seo推广
  • 农村pc网站开发秦皇岛网络
  • 网站头部导航福建工程建设管理中心网站
  • 新颖的网站策划有什么做3维的案例网站