当前位置: 首页 > news >正文

免费psd模板网站中文搜索引擎有哪些平台

免费psd模板网站,中文搜索引擎有哪些平台,南通学校网站建设,简洁的网页文章目录 机器学习专栏 主要思想 主流方法 投影 二维投射到一维 三维投射到二维 流形学习 PCA主成分分析 介绍 代码 内核PCA 具体代码 LLE 结语 机器学习专栏 机器学习_Nowl的博客-CSDN博客 主要思想 介绍:当一个任务有很多特征时,我们…

文章目录

机器学习专栏 

主要思想 

主流方法

投影

二维投射到一维

三维投射到二维

流形学习

PCA主成分分析

介绍

代码

内核PCA

具体代码

LLE

结语


机器学习专栏 

机器学习_Nowl的博客-CSDN博客

主要思想 

介绍:当一个任务有很多特征时,我们找到最主要的,剔除不重要的 

主流方法

1.投影

投影是指找到一个比当前维度低的维度面(或线),这个维度面或线离当前所有点的距离最小,然后将当前维度投射到小维度上

二维投射到一维

三维投射到二维

2.流形学习

当然,当数据集投影后在低纬度上有重叠的时候,我们应该考虑别的方法

我们来看看被称为瑞士卷数据集的三维图

经过两种降维数据的处理,我们得到下面两幅二维数据可视化图 

我们可以看到,左边的数据 有很多重合的点,它使用的是投影技术,而右图就像将数据集一层层展开一样,这就是流形学习

我们接下来介绍三种常见的具体实现这些的降维方法

一、PCA主成分分析

介绍

pca主成分分析是一种投影降维方法

PCA主成分分析的思想就是:识别最靠近数据的超平面,然后将数据投影到上面

代码

这是一个最简单的示例,有一个两行三列的特征表x,我们将它降维到2个特征(n_components参数决定维度)

from sklearn.decomposition import PCAx = [[1, 2, 3], [3, 4, 5]]pca = PCA(n_components=2)
x2d = pca.fit_transform(x)print(x)
print(x2d)

 运行结果

二、三内核PCA

内核可以将实例隐式地映射到高维空间,这有利于模型寻找到数据的特征(维度过低往往可能欠拟合),其他的思想与PCA相同

具体代码

1.线性内核

特点: 线性核对原始特征空间进行线性映射,相当于没有映射,直接在原始空间上进行PCA。适用于数据在原始空间中是线性可分的情况。

import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='linear', gamma=0.1)
X_kpca = kpca.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

2.rbf内核

特点: RBF核是一种常用的非线性核函数,它对数据进行非线性映射,将数据映射到高维空间,使得在高维空间中更容易分离。gamma参数控制了映射的“尺度”或“平滑度”,较小的gamma值导致较远的点对结果有较大的贡献,产生更平滑的映射,而较大的gamma值使得映射更加局部化。

import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='rbf', gamma=0.04)
X_kpca = kpca.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

3.sigmoid内核

特点: Sigmoid核也是一种非线性核函数,它在数据上执行类似于双曲正切(tanh)的非线性映射。它对数据进行映射,使其更容易在高维空间中分离。gamma参数和coef0参数分别控制了核函数的尺度和偏置。

import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='sigmoid', gamma=0.04)
X_kpca = kpca.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

三、LLE

局部线性嵌入(Locally Linear Embedding,LLE)是一种非线性降维算法,用于保留数据流形结构。

以下是使用LLE展开瑞士卷数据集的代码

import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.manifold import LocallyLinearEmbedding# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)# 使用LLE将数据降为二维
lle = LocallyLinearEmbedding(n_neighbors=12, n_components=2, random_state=42)
X_lle = lle.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_lle[:, 0], X_lle[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('LLE of Swiss Roll Dataset')
plt.show()

结语

降维的方法不止这几种,重要的是我们要理解为什么要降维——减少不重要的特征,同时也能加快模型的训练速度

http://www.yayakq.cn/news/711952/

相关文章:

  • 做签名的网站女子医院网站设计怎么做
  • 医疗室内设计网站推荐企业网站改版的好处
  • 网站过期怎么办wordpress调用置顶分类
  • 太原顶呱呱做网站地址电话做数据ppt模板下载网站
  • 网站建设宣传psd开展网站建设服务
  • 网站设计的一般流程什么是seo搜索
  • 跟网站开发有关的内容wordpress模特主题
  • 硬件开发流程图seoshanghai net
  • 自己做网站 搜索功能开发免费wordpress主题分享
  • 免费html网站登录模板成年人夜大
  • 新学校网站建设成果无锡建设机械网站制作
  • 工程信息价查询网站广中路街道网站建设
  • logo查询网站怎么建设商城网站
  • 南京凯盛建设集团官方网站公司网站建设需要资质
  • 织梦网站404怎么做名匠装饰公司
  • 南昌网站建设方案开发湖北省住房与城乡建设部网站
  • 网站建设会计分录怎么写彩票网站net网站开发找那家
  • 如何开办网站品牌网站建设可信大蝌蚪
  • 郑州市建设教育协会网站三明建设局网站
  • 优化网站排名怎么样聊城网站建设信息
  • 建设部网站业绩如何录入学网站开发可以创业吗
  • 怎么办个人网站网站管理系统怎么做
  • 青岛胶南做网站的有多少上海做外贸建站的专业公司
  • 360网站地图怎么做佛山白坭网站建设
  • 网络网站建设电话推销主流网站模板
  • 梅州网站建设梅州wordpress+极致优化
  • 网站介绍页面网站报错404
  • qq发网站链接怎么做计算机专业的会学怎么做网站吗
  • 网站建设公司有多少家给我免费观看片在线
  • 做网站平台的公司有哪些西安电子科技大学信息化建设处网站