当前位置: 首页 > news >正文

采购需求网站建设wordpress循环分类子分类与文章

采购需求网站建设,wordpress循环分类子分类与文章,购物网站建设 优帮云,用Python做网站如何配置域名【算法介绍】 使用纯OpenCV部署YOLOv11-Pose姿态估计ONNX模型是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,可以通过一些间接的方法来实现这一目标&#x…

【算法介绍】

使用纯OpenCV部署YOLOv11-Pose姿态估计ONNX模型是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,可以通过一些间接的方法来实现这一目标,即将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

YOLOv11-Pose结合了YOLO(You Only Look Once)的高效物体检测算法和Pose Estimation(姿态估计)专注于识别人体关键点的能力,能在多种计算平台上实时处理人体姿态数据。其采用的核心原理是特殊神经网络结构YOLOv3-tiny,能快速计算出图像中所有人体关键点的位置,实现姿态估计。同时,该模型还采用了ONNX格式,这是一种开放的模型表示,使得模型能在不同的深度学习框架和工具之间轻松转换。

在使用OpenCV部署YOLOv11-Pose ONNX模型时,需要确保开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。具体步骤包括加载ONNX模型、预处理输入图像、将预处理后的图像输入到模型中获取检测结果、对检测结果进行后处理等。由于YOLOv11是一个复杂的模型,其输出可能包含多个层的信息,因此需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。

总的来说,使用纯OpenCV部署YOLOv11-Pose ONNX模型需要深入理解相关领域的知识,包括YOLOv11的模型架构、OpenCV的DNN模块以及ONNX格式等。

【效果展示】

【实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov11_pose.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.using namespace std;
using namespace cv;
using namespace dnn;template<typename _Tp>
int yolov11(_Tp& task, cv::Mat& img, std::string& model_path)
{cv::dnn::Net net;if (task.ReadModel(net, model_path, false)) {std::cout << "read net ok!" << std::endl;}else {return -1;}//生成随机颜色std::vector<cv::Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(cv::Scalar(b, g, r));}std::vector<OutputParams> result;bool isPose = false;if (typeid(task) == typeid(Yolov8Pose)) {isPose = true;}PoseParams poseParams;if (task.Detect(img, net, result)) {if (isPose)DrawPredPose(img, result, poseParams);elseDrawPred(img, result, task._className, color);}else {std::cout << "Detect Failed!" << std::endl;}system("pause");return 0;
}template<typename _Tp>
int video_demo(_Tp& task, std::string& model_path)
{std::vector<cv::Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(cv::Scalar(b, g, r));}std::vector<OutputParams> result;cv::VideoCapture cap("video.avi");if (!cap.isOpened()){std::cout << "open capture failured!" << std::endl;return -1;}cv::Mat frame;bool isPose = false;PoseParams poseParams;
#ifdef VIDEO_OPENCVcv::dnn::Net net;if (typeid(task) == typeid(Yolov11Pose)) {isPose = true;}if (task.ReadModel(net, model_path, true)) {std::cout << "read net ok!" << std::endl;}else {std::cout << "read net failured!" << std::endl;return -1;}#elseif (typeid(task) == typeid(Yolov8PoseOnnx)) {isPose = true;}if (task.ReadModel(model_path, true)) {std::cout << "read net ok!" << std::endl;}else {std::cout << "read net failured!" << std::endl;return -1;}#endifwhile (true){cap.read(frame);if (frame.empty()){std::cout << "read to end" << std::endl;break;}result.clear();
#ifdef VIDEO_OPENCVif (task.Detect(frame, net, result)) {if (isPose)DrawPredPose(frame, result, poseParams,true);elseDrawPred(frame, result, task._className, color,true);}
#elseif (task.OnnxDetect(frame, result)) {if (isPose)DrawPredPose(frame, result, poseParams, true);elseDrawPred(frame, result, task._className, color, true);}
#endifint k = waitKey(10);if (k == 27) { //esc break;}}cap.release();system("pause");return 0;
}int main() {string detect_model_path = "./yolo11n-pose.onnx";Yolov11Pose detector;video_demo(detector, detect_model_path);
}

【视频演示】

C++使用纯opencv部署yolov11-pose姿态估计onnx模型_哔哩哔哩_bilibili【测试环境】vs2019 cmake==3.24.3 opencv==4.8.0【运行步骤】下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt转换模型:yolo export model=yolo11n-pose.pt format=onnx dynamic=False opset=, 视频播放量 0、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,使用易语言调用opencv进行视频和摄像头每一帧处理,C#使用纯OpenCvSharp部署yolov8-pose姿态识别,C# winform部署yolov11目标检测的onnx模型,基于opencv封装易语言读写视频操作模块支持视频读取和写出,使用C++部署yolov8的onnx和bytetrack实现目标追踪,C++使用yolov11的onnx模型结合opencv和bytetrack实现目标追踪,yolov5-7.0部署在ros机器人操作系统视频演示,使用C#部署openvino-yolov5s模型,使用C#调用libotrch-yolov5模型实现全网最快winform目标检测icon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1491XY2EWk/
【源码下载】

https://download.csdn.net/download/FL1623863129/89847502


【测试环境】

vs2019
cmake==3.24.3
opencv==4.8.0

【运行步骤】

下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt

转换模型:yolo export model=yolo11n-pose.pt format=onnx dynamic=False opset=12 

编译项目源码,将模型,视频路径对应到源码即可运行

http://www.yayakq.cn/news/544454/

相关文章:

  • 爱网站网站查询wordpress安装乱码
  • 做网站常用工具wordpress 上传文件功能
  • 青海网站建设哪家强睢宁县建设工程招标网
  • 建网站主要工具动态效果酷炫的网站
  • 查询域名网站wordpress后台无法登陆
  • 网站站内链接百度指数
  • 利用渗透的网站做寄生虫重庆巫山网站设计公司
  • python可以做网站吗杭州最便宜的网站建设
  • 做网站用jquery网络搭建与维护是什么
  • 建筑网站夜里几点维护许昌网站seo
  • 网站中的图片展示功能该设计什么深圳网站建设制作网络公司
  • 合肥网站制作软件开发文档说明
  • 扬州网站制作哪家好石狮市建设局网站
  • 网站备案多个域名学会建设网站必要性
  • 手机版网站公司的商标设计网页
  • 做网站要几个人长沙招聘网最新招聘信息
  • 中国建设银行行网站如何快速找到做网站的客户
  • 诊断网站seo现状的方法wordpress文章排列顺序
  • 产品展示网站模板下载产品经理做网站
  • 备案ip 查询网站查询系统网络推广24年怎么做
  • 想自己做个网站怎么做大连市营商环境建设局网站
  • 中小企业建设网站策略高端网站开发哪里好
  • 余姚做轴承网站wordpress静态设置方法
  • 物业网站建设山东最新资讯
  • 深圳网站制作的公司哪家好企业网站网页打开慢
  • 网站开发模式分为h5响应式网站建设代理
  • 东城东莞网站建设哪里可以学到运营
  • 网站建设捌金手指花总十七dw做电影网站
  • 让别人做网站如何防止后门国内企业手机网站建设
  • 北京网站开发外包gzip 网站