当前位置: 首页 > news >正文

长沙网站建设的公司wordpress 点赞分享

长沙网站建设的公司,wordpress 点赞分享,三屏合一网站开发,营销推广活动策划方案目录 一、神经网络简介 二、深度学习要解决的问题 三、深度学习的应用 四、计算机视觉 五、计算机视觉面临的挑战 六、得分函数 七、损失函数 八、前向传播 九、反向传播 十、神经元的个数对结果的影响 十一、正则化与激活函数 一、神经网络简介 神经网络是一种有监督…

目录

 一、神经网络简介

二、深度学习要解决的问题 

三、深度学习的应用

四、计算机视觉

五、计算机视觉面临的挑战

 六、得分函数

七、损失函数

八、前向传播

九、反向传播

十、神经元的个数对结果的影响

十一、正则化与激活函数


 一、神经网络简介

        神经网络是一种有监督的机器学习算法,神经网络当成一种特征提取的方法,神经网络追求是什么样的的权重参数适合当前任务。        

二、深度学习要解决的问题 

        机器学习流程:数据获取,特征工程,建立模型,评估与应用。最重要的是特征工程,前面学了那么多算法,归根到底,模型都是根据特征来进行训练。

        特征工程的作用:

                数据特征决定了模型的上限。

                预处理和特征提取是最核心的。

                算法和参数决定了如何去逼近这个上限。

        机器学习问题:人工选择数据,人工选择特征,人工选择算法,人工选择结果。(说白了就是实现了数学公式)

        深度学习,神经网络:解决了特征工程的问题

         对于文本,图像数据去提取特征难,放在深度学习,神经网络里,就很好解决。

        可以把深度学习,神经网络当作一个黑盒子,它能自动的去提取特征(它认为的最合适的特特征)它是真正有学习过程的,它可以真正的去学习什么样的特征是最合适的,有了特征,当成输入+线性回归、逻辑回归、SVM等等都行。

三、深度学习的应用

        最常见、最广泛的应用是计算机视觉(人脸识别等)、自然语言处理(ChatGpt)。

        那么是否也存在缺点呢?看如下图

        

        随着数据规模的提升,计算量太大,参数多,速度慢,比如手机端人脸识别,会出现识别延时的现象。

        提一下数据生成:对于庞大的训练数据,数值数据可以采用一些数学工具包生成,对于图像数据可以对图像进行翻转、镜面变换、平移等等,容易得到。

四、计算机视觉

                最经典的图像分类任务。我们看看在计算机里图像是怎么表示的吧。

        例如:一张300*100*3的猫咪图像 300:High 100:wight 3:三个颜色通道RGB

 它是由一个一个像素点组成的,每个像素点的值0~255,值越大颜色越浅。它被表示为三维数组的形式。

        用数值形式表示如:

\begin{bmatrix} R & G &B \\ .& .& .\\ .& .& .\\ . & . & . \end{bmatrix}

五、计算机视觉面临的挑战

        拍摄图像有照射角度,形状改变,部分遮蔽,背景混入的现象。

        机器学习的常规套路:

                收集数据并给定标签

                训练一个分类器

                测试评估

        我们用KNN算法来做图像分类任务

        K近邻算法:算法流程

                1. 计算以知类别数据集中的所有点与当前的距离

                2. 按照距离依次排序

                3. 选取与前点距离最小的K个点

                4. 确定前K个点所在类别的概率

                5. 返回前K个点出现的频率最高的类别作为当前点预测分类

        数据集:CIFAR-10数据库,10类标签,5000个训练数据,10000个测试数据,大小为32*32*3

        用KNN来进行图像分类

                距离的选择:L1 distance : d1(I_1,I_2)=\sum_p\left | I_1^p-I_2^p \right |(像素点对应相减)

                图像距离计算方式:

                一个栗子:

                测试结果:部分还可以,没有分类对的图像,问题出现在哪里???

                为什么K近邻算法不能用图像分类:

                        我们关注的是主体(主要成分),而背景主导是一个最大的问题,那么如何才能让机器学习到那些是重要的成分呢?

 六、得分函数

                线性函数(得分函数)

                从输入-->输出的映射

                

七、损失函数

        假设分三类:cat,dog,ship

        计算方法:

                 

        决策边界,多维数据,多组权重参数构成了决策边界

        如何衡量分类结果呢?

                上图所示:结果的得分值有着明显的差异,我们需要明确的指导模型表示当前效果有多好或是有多坏!!!

               引入损失函数L_i=\sum_{j\neq y_i}max(0,s_j-s_{y_i}+1)

                其中:s_j表示错误类别得分,s_{y_i}表示正确类别的得分,1表示容忍程度,即正确类别的得分至少比错误类别高1

        例如有三个测试样本:

正确类别
预测类别得分(样本1)猫(样本2)车(样本3)蛙
cat3.21.32.2
car5.14.92.5
frog-1.72.0-3.1

                 则损失值:

                        L_1 = max(0,5.1-3.2+1)+max(0,-1.7-3.2+1)=2.9

                        同理:L_2=0,L_3=10.9

                由损失值可以看出样本2是分类正确的

                

        如果损失函数的值相同,那么意味着两个模型一样吗??

        假设:

        f(x,w)=Wx,L=\frac{1}{N}\sum_{i=1}^{N}max(0,f(x_i;w)_j-f(x_i;w)y_i+1)

        输入数据:x=[1,1,1,1]

        模型A:w_1=[1,0,0,0]

        模型B:w_2=[0.25,0.25,0.25,0.25]

        得到:w_1^Tx=w_2^Tx=1,L_1=L_2

        一样吗??显然是不一样的,可以看出来模型A只是利用了第一个参数,而模型B均等利用4个参数,B显然更好,那么怎么去区分这两个模型呢??或者说怎么去让模型A变得平滑,让它不那么极端呢??

        答案是正则化。即加入正则化惩罚项。

        即:L=\frac{1}{N}\sum_{i=1}^{N}max(0,f(x_i;w)_j-f(x_i;w)y_i+1)+\lambda R(w)

        正则化惩罚项:R(w)=\sum_k\sum_lw_{k,l}^2

        目的:神经网络过于强大,几乎90%的神经网络都会过拟合,不要让它太复杂,过拟合的模型是没用的。

        softmax分类器

                现在啊,我们得到是一个输入的得分值,损失函数也是基于得分值的损失。但是直接给我们一个概率值岂不是更好!!!那么如何把一个得分值转化成一个概率值呢?

        即sigmoid函数:

           归一化:p(Y=k/x=x_i)=\frac{e^{ij}}{\sum e^{ij}} \, where \,s=f(x_i,w)

            计算损失值:L_i =-logp(Y=y_i|x=x_i)

                

cat3.2

---->

exp

24.5

--------->

normalize

0.13
car5.1164.00.87
frog-1.70.180.00
得分放大归一化概率

                loss: l_i=-log(0.13)=0.87

八、前向传播

        前向传播:一步一步的往前走,得到概率值,损失值

        

        前向传播很好理解。

        经过前向传播得到是损失值,但是怎么更新(参数,权重)模型呢??

        这就交给反向传播了。

九、反向传播

        经过前面的学习我们知道在做线性回归时,我们让目标函数

J(\theta)=\frac{1}{2m}\sum_{i=1}^{m}(h_{\theta}(x^{i})-y^{i})^2

        即损失函数最小化

        经过求解梯度,更新参数theta

          \frac{\partial J}{\partial \theta_i}=-\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})x_i^j

        \theta_j'=\theta_j+\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{i})-y^{i})x_i^j

        那么放在神经网络也是用梯度下降的方法,具体是怎么样实现的呢?

        举一个例子:

                

                f(x,y,z)=(x+y)z

let \, q=x+y \, \vdots \, \frac{\partial q}{\partial x}=1\, \frac{\partial q}{\partial y}=1

f=qz\, \vdots\frac{\partial f}{\partial q}=z\, \, \frac{\partial q}{\partial z}=q

want:\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z}

\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q}\cdot \frac{\partial q}{\partial y}=z

        如上所示:计算梯度需要逐层计算(链式法则)

        可以一个一个计算,也可以一大块一大块计算

十、神经网络架构细节

        层次结构:4层

        神经元:9

        全连接:每一层都与下一层全部连接

        我们看到中间的箭头,实际是有箭头的吗???哈哈哈哈,并不是,中间就是权重参数矩阵,输入层输入两个特征,经过W1矩阵变换到5个特征,怎么变得呢??黑盒子!!!然后经过W2变换成4个特征,最后输出。

        非线性变化:之前我们提到过神经网络是一层一层的,那么:

[(x_1w_1)w_2]w_3 \neq xw_1w_2w_3

        为啥呢??即在每一层后面都加有非线性变换,可以联想到之前的将得分值转化为概率值与之类似。

        其基本结构:f=w_2Rule(w,x)

        继续堆叠一层: f=w_3Rule(w_2Rule(w,x))

        神经网络的强大之处在于,用更多的参数来拟合复杂的数据

        参数多到百万级都是小儿科,但是参数越多越好吗??

十、神经元的个数对结果的影响

        并不是哦!!!过满则亏。

        大家想一下,增加一个一个神经元九就了一组参数。

        还是那句话,神经网络非常容易过拟合!!!!!!

十一、正则化与激活函数

        正则化的作用:

                惩罚力度对结果影响

                防止过拟合

        激活函数:

                非常重要的一部分

                常用的激活函数(Sigmoid,Relu,Tanh)非线性变换(把得分值转换为概率值)

                   

        激活函数的对比

        sigmoid:

         

        我们看到当数值偏大的时候,比如x=6时,求导后值几乎为零,梯度消失,如果向后传播, 对后面的影响几乎没有,所以这是存在限制的。

        当今更多使用Relu这个激活函数:

        

        求导值不变。

十二、神经网络解决过拟合的方法

        数据预处理,标准化

        参数初始化,通常我们都使用随机策略来进行参数初始化

        正则化

        DROP—OUT(自损八百)

                思想:让效果消弱

                

         即在某次正反向传播中,每一层随机杀死一部分神经元,不让参与。相当于一个比例:30%,每次让30%的神经元不参与训练。

http://www.yayakq.cn/news/669197/

相关文章:

  • 娱乐网站开发spspwk海口建网站 模板
  • 广州网站建设骏域环保地板郑州做网站和推广哪家好
  • 网站所有权问题完整域名展示网站源码
  • 系统下载网站建设模板如何下载别人网站模板
  • 农村创业好项目汕头网站优化找谁
  • 建筑网址导航大全首页北京seo不到首页不扣费
  • 如何在已建设好的网站做修改信息产业部互联网网站管理工作细则
  • 网站正能量入口织梦php网站
  • 电脑课做网站的作业辽宁网站建站系统平台
  • 做影视网站不备案境外建设网站贴吧
  • 网站开发工程师自学网络公司网站asp
  • 用一个织梦程序做两个网站接单赚钱平台
  • 宣传网站建设方案模板下载那个网站可以做网页
  • 海口智能建站详情wordpress用户推广
  • 寺庙建设网站的意义常州微信网站建设价位
  • 网站建站网站91955设计建设网站公司哪家好
  • 可以自己做斗图的网站做网站如何连数据库
  • 哪里有做配音的兼职网站滨州企业做网站
  • 传奇免费网站建设wordpress 删除仪表盘
  • 郑州模板建站定制网站wordpress的页面标题
  • 网络推广商城网站台州企业网站建设公司
  • 网站多久备案一次超级外链工具 增加外链中
  • php做网站需要啥技术什么是网站的自适应
  • mcms怎么做网站亚马逊 怎么做国外网站
  • 网站刷新新前台是什么意思wordpress仅搜索标题
  • 甘肃省集约化网站建设网站开发建站微信公众号小程序
  • 做网站网络公司广告网站留电话不用验证码
  • php网站开发实例视频甘肃泾川县门户网站两学一做
  • 网站是用sql2012做的_在发布时可以改变为2008吗集团官方网站建设方案
  • 孝感市网站建设装潢设计用什么软件