当前位置: 首页 > news >正文

西安o2o网站设计公司在线设计网站源码

西安o2o网站设计公司,在线设计网站源码,东莞订制网站建设,电子商务网站建设配置文章目录 算法介绍实验分析 算法介绍 层次聚类是一种将数据集划分为层次结构的聚类方法。它主要有两种策略:自底向上和自顶向下。 其中AGNES算法是一种自底向上聚类算法,用于将数据集划分为层次结构的聚类。算法的基本思想是从每个数据点开始&#xff0…

文章目录

      • 算法介绍
      • 实验分析

算法介绍

层次聚类是一种将数据集划分为层次结构的聚类方法。它主要有两种策略:自底向上自顶向下
其中AGNES算法是一种自底向上聚类算法,用于将数据集划分为层次结构的聚类。算法的基本思想是从每个数据点开始,逐步合并最相似的簇,直到形成一个包含所有数据点的大簇。这个过程被反复执行,构建出一个层次化的聚类结构。这其中的关键就是如何计算聚类簇之间的距离。 但实际上,每个簇都是一个集合,故我们只需要计算集合与集合的距离即可。例如,给定聚类簇 C i C_i Ci C j C_j Cj,可通过下面的式子来计算距离:
d m i n ( C i , C j ) = min x ∈ C i , z ∈ C j d i s t ( x , z ) (1) d_{min}(C_i,C_j)=\underset{x \in C_i,z\in C_j}{\text{min}} \ dist(x,z) \tag{1} dmin(Ci,Cj)=xCi,zCjmin dist(x,z)(1)
d m a x ( C i , C j ) = max x ∈ C i , z ∈ C j d i s t ( x , z ) (2) d_{max}(C_i,C_j)=\underset{x \in C_i,z\in C_j}{\text{max}} \ dist(x,z) \tag{2} dmax(Ci,Cj)=xCi,zCjmax dist(x,z)(2)
d a v g ( C i , C j ) = 1 ∣ C i ∣ ∣ C j ∣ ∑ x ∈ C i ∑ z ∈ c j d i s t ( x , z ) (3) d_{avg }(C_i,C_j)=\frac{1}{|C_i||C_j|}\sum_{x\in C_i}\sum_{z\in c_j} dist(x,z) \tag{3} davg(Ci,Cj)=Ci∣∣Cj1xCizcjdist(x,z)(3)

其中 ∣ C i ∣ |C_i| Ci是集合 C i C_i Ci的元素个数。显然最小距离是由两个簇最近的样本点决定的;最大距离是由两个簇最远的样本点决定的;平均距离是由两个簇所有样本点共同决定的。

还有个更有效的计算集合距离的方法豪斯多夫距离:假设在同一样本空间的集合 X X X Z Z Z之间的距离可以通过以下式子计算:
dist ⁡ H ( X , Z ) = max ⁡ ( dist ⁡ h ( X , Z ) , dist ⁡ h ( Z , X ) ) (4) \operatorname{dist}_{\mathrm{H}}(X, Z)=\max \left(\operatorname{dist}_{\mathrm{h}}(X, Z), \operatorname{dist}_{\mathrm{h}}(Z, X)\right) \tag{4} distH(X,Z)=max(disth(X,Z),disth(Z,X))(4)

其中 dist ⁡ h ( X , Z ) = max ⁡ x ∈ X min ⁡ z ∈ Z ∥ x − z ∥ 2 \operatorname{dist}_{\mathrm{h}}(X, Z)=\max _{\boldsymbol{x} \in X} \min _{\boldsymbol{z} \in Z}\|\boldsymbol{x}-\boldsymbol{z}\|_2 disth(X,Z)=maxxXminzZxz2

豪斯多夫距离的应用涉及到形状匹配、图像匹配、模式识别等领域,它对于描述两个集合的整体形状之间的差异具有较好的效果。然而,由于计算豪斯多夫距离涉及到点之间的一一匹配,因此在实际应用中可能需要考虑一些优化算法以提高计算效率。

下图是AGNES算法流程图:
在这里插入图片描述

实验分析

数据集如下表所示:
在这里插入图片描述
读入数据集:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltdata = pd.read_csv('data/4.0.csv')

定义距离函数:

# 定义豪斯多夫距离函数
def hausdorff_distance(cluster1, cluster2):max_distance1 = max(min(distance(p1, p2) for p1 in cluster1) for p2 in cluster2)max_distance2 = max(min(distance(p1, p2) for p2 in cluster2) for p1 in cluster1)return max(max_distance1, max_distance2)# 定义距离函数
def distance(point1, point2):return ((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2) ** 0.5

AGNES算法:

# AGNES算法
def agnes(data):clusters = [[point] for point in data.values]while len(clusters) > 4:min_distance = float('inf')merge_indices = (0, 0)for i in range(len(clusters)):for j in range(i + 1, len(clusters)):cluster1 = clusters[i]cluster2 = clusters[j]current_distance = hausdorff_distance(cluster1, cluster2)if current_distance < min_distance:min_distance = current_distancemerge_indices = (i, j)# 合并最近的两个簇merged_cluster = clusters[merge_indices[0]] + clusters[merge_indices[1]]clusters.pop(merge_indices[1])clusters[merge_indices[0]] = merged_clusterreturn clusters

绘制分类结果函数:

# 绘制分类结果
def plot_clusters(data, clusters):plt.figure(figsize=(8, 8))# 绘制原始数据点plt.scatter(data['Density'], data['Sugar inclusion rate'], color='black', label='Original Data')# 绘制分类结果for i, cluster in enumerate(clusters):cluster_data = pd.DataFrame(cluster, columns=['Density', 'Sugar inclusion rate'])plt.scatter(cluster_data['Density'], cluster_data['Sugar inclusion rate'], label=f'Cluster {i + 1}')# 添加标签和图例plt.title('AGNES Clustering Result')plt.xlabel('Density')plt.ylabel('Sugar inclusion rate')plt.legend()plt.show()

执行AGNES且画出分类结果:

# 执行层次聚类
result_clusters = agnes(data)# 输出聚类结果
for i, cluster in enumerate(result_clusters):print(f'Cluster {i + 1}: {cluster}')# 绘制分类结果图
plot_clusters(data, result_clusters)

在这里插入图片描述

http://www.yayakq.cn/news/61842/

相关文章:

  • 基础型网站价格免费照片的网站模板免费下载
  • 农业网站建设招标书广告制做公司资质
  • 科技企业网站源码下载公司网站建设内容
  • 石家庄网站设计制作服务公司网站推广是做什么
  • 网站后台管理系统怎么用网站建设推广小王
  • 有什么做美食的视频网站百度seo点击排名优化
  • 德国购物网站大全贺贵江seo教程
  • 企业网站建设费怎么核算网页设计师中级证书
  • 相城专业的网站建设彩票的网站怎么做
  • 临海市住房与城乡建设规划局 网站查询网域名解析
  • 东莞企业网站建设价格福州市官网
  • 怎么建立一个网站能够与讯飞云对话上海市建设执业注册中心网站
  • 怎样在手机上建立自己的网站临夏州建设网站
  • 青岛开发区网站建设公司请人开发一个小程序要多少钱
  • 做餐饮酒店网站网站建设公司方案
  • vue 做门户网站建设中专网站首页
  • 国内最最早做虚拟货币的网站广告点击量多少钱一个点击
  • 南京市建设档案馆网站协会宣传网站开发方案
  • 石家庄网站建设今天改网名浙江省工程建设管理协会网站
  • 如何查看网站是否被黑住房和城乡建设部网站现行规范
  • win2003搭建wordpresswordpress国内优化 墙
  • 芜湖网站设计服装网站建设公司推荐
  • 网站建设ppt演示文档重庆市建筑工程网
  • 如何给网站优化韩国网站免费观看
  • 供求信息网站开发背景公司网站建设需求表
  • 电影微网站开发django 微信小程序开发教程
  • 制作网站的程序美食网站策划书
  • 中国公司网站建设wordpress 股票
  • 天津建设网站免费南阳在线网站制作
  • 谷歌网站怎么做外链培训行业网站建设的重要性