当前位置: 首页 > news >正文

网站建设的具体任务有哪些方面成都住建局官网租房交易中心

网站建设的具体任务有哪些方面,成都住建局官网租房交易中心,下沙网站优化,wordpress教程百度云📜用例 📜Python社群纽带关系谱和图神经 | 📜多标签混淆矩阵模型 | 📜二元分类分层混淆矩阵模型 | 📜混淆矩阵评估特征归因 ✒️梗概 混淆矩阵是评估分类模型性能的有用工具。 该矩阵通过将预测值与实际值进行比较&…

📜用例

  1. 📜Python社群纽带关系谱和图神经 | 📜多标签混淆矩阵模型 | 📜二元分类分层混淆矩阵模型 | 📜混淆矩阵评估特征归因

✒️梗概

混淆矩阵是评估分类模型性能的有用工具。 该矩阵通过将预测值与实际值进行比较,可以深入了解模型对数据进行分类的程度。 理解和解释混淆矩阵可能具有挑战性,特别是对于机器学习的初学者来说。 然而,理解每个单元代表的内容至关重要,因为它可以帮助您评估模型的优点和缺点。

我们将使用 Python 中的 Scikit-learn 库深入讨论混淆矩阵。 我们将带您了解混淆矩阵到底是什么、为什么它很重要以及如何有效地解释其结果。 此外,我们将引导您构建一个简单的机器学习模型,作为示例,该模型根据花卉的测量值对花卉种类进行分类。

混淆矩阵是用于评估机器学习算法性能的表格。它显示了算法在每个类别中正确或错误分类的样本数量。混淆矩阵有两个维度:实际维度和预测维度。在二元分类中,只有两个类(正类和负类),它看起来像这样:
Predicted Positive  Predicted Negative  Actual Positive  True Positive (TP)  False Negative (FN)  Actual Negative  False Positive (FP)  True Negative (TN)  \begin{array}{|l|c|l|} \hline & \text { Predicted Positive } & \text { Predicted Negative } \\ \hline \text { Actual Positive } & \text { True Positive (TP) } & \text { False Negative (FN) } \\ \hline \text { Actual Negative } & \text { False Positive (FP) } & \text { True Negative (TN) } \\ \hline \end{array}  Actual Positive  Actual Negative  Predicted Positive  True Positive (TP)  False Positive (FP)  Predicted Negative  False Negative (FN)  True Negative (TN) 
让我们考虑一个二元分类问题,其中有两个类:“正”和“负”。

  • 真正例(TP):这是指模型在实际情况下正确预测实例属于正类。换句话说,TP是指被模型正确预测为正例的正例实例的数量。
  • 真负例(TN):这是指模型在实际情况下正确预测实例属于负类。换句话说,TN是指被模型正确预测为负例的负例数量。
  • 假负例(FP):这是指模型错误地预测某个实例属于正类,而实际上它属于负类。 换句话说,FP指的是被模型错误预测为正例的负例的数量。
  • 假负例(FN):这是指模型错误地预测某个实例属于负类,而实际上它属于正类。 换句话说,FN 指的是被模型错误预测为负例的正例数量。

混淆矩阵是机器学习中评估分类模型性能的常用工具。以下是一些现实世界或业务用例,混淆矩阵可能会有所帮助:

  • 欺诈检测:银行使用机器学习模型来识别欺诈交易。 混淆矩阵通过显示真阳性、真阴性、假阳性和假阴性的数量,帮助银行了解模型的执行情况
  • 医疗诊断:医院使用机器学习模型来诊断患有某种疾病的患者。 混淆矩阵通过显示真阳性、真阴性、假阳性和假阴性的数量,帮助医生了解模型的准确性。
  • 客户流失预测:公司使用机器学习模型来预测哪些客户可能会流失(停止使用他们的服务)。 混淆矩阵通过显示真阳性、真阴性、假阳性和假阴性的数量,帮助公司了解模型的表现如何。
  • 情绪分析:社交媒体平台使用机器学习模型来分析用户评论并确定它们是正面还是负面。 混淆矩阵通过显示真阳性、真阴性、假阳性和假阴性的数量,帮助平台了解模型的准确性。
  • 图像分类:电子商务网站使用机器学习模型自动将产品图像分类为不同类别,例如服装或电子产品。 混淆矩阵通过显示每个类别的真阳性、真阴性、假阳性和假阴性的数量,帮助他们了解图像分类算法的执行情况。

让我们看一个对 Scikit-Learn 的乳腺癌数据集进行二元分类的示例。

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrixdata = load_breast_cancer()X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, random_state=0)model = LogisticRegression()
model.fit(X_train, y_train)y_pred = model.predict(X_test)cm = confusion_matrix(y_test, y_pred)print("Confusion Matrix:")
print(cm)

使用Scikit-Learn中的confusion_matrix只会显示混淆矩阵的Numpy数组,但如果想绘制它,我们可以使用Scikit-Learn中的plot_confusion_matrix函数,如下所示:

from sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(model, X_test, y_test)

这将使用 Matplotlib 输出混淆矩阵图:

现在让我们探讨一个使用多个类(而不仅仅是 2 个二元类)的混淆矩阵的示例。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, plot_confusion_matrix
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as pltiris = load_iris()
X = iris.data
y = iris.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)y_pred = clf.predict(X_test)cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(clf, X_test, y_test)  

行代表真实类别,列代表预测类别。 对角线元素(从左上到右下)显示每个类别的正确预测数量。 非对角线元素显示错误分类。 例如,在我们的例子中,我们可以看到 0 类的 15 个样本被正确预测,没有错误,但是我们可以看到 1 类有两个错误分类为 2 类。

参阅:亚图跨际

http://www.yayakq.cn/news/452713/

相关文章:

  • 点创网站建设博物馆装饰设计公司
  • 连云港做网站设计游戏开发 网站开发
  • 电力系统网络设计报告邢台seo
  • 五通桥移动网站建设it外包 源码
  • 新乡网站推广公司做一个网站需要多大的空间
  • 网站网上预定功能怎么做wordpress 51
  • 网站被别人备案广17网站一起做网店
  • 网站建设和微信小程序陕西公共资源交易中心
  • 太原网站建设价格套餐网站开发的主要工作步骤
  • 西安大兴医院网站建设网站建设产品价格
  • 网站开发者工资程序员培训机构哪家好
  • 特价手机网站建设炫酷的移动端网站
  • 营销网站优点学网站建设
  • wordpress资源站模板创立一个公司需要什么
  • 网站的建设与维护步骤网站建设需求文档编写目的
  • 中山网站优化营销关于动漫的网站建设
  • h5网站模板下载北京菜谱设计制作公司
  • 哪家专门做特卖的网站?做网站的电脑软件
  • 中小企业网站积木式搭建建宣传网站
  • 网站建设及验收标准闽侯做网站
  • 自己做的php网站进行伪静态公司注册地址变更需要多长时间
  • 廊坊网站制作系统企业商城网站建设
  • 网站推广软件价格北京金山办公软件
  • 网站建设营销推广分类信息网站建设多少钱
  • 网站平台建设意见织梦手机网站怎么安装
  • 安康鼎盛网站建设wordpress wdpx
  • 无锡免费网站制作室内设计师联盟官网入口
  • 做网站服务器内存营销型企业网站制作
  • 金山石化网站建设找培训机构的app
  • 简历模板制作神器网站seo关键词布局