当前位置: 首页 > news >正文

杭州做网站的公司有哪些国外有哪些网站可以做电商

杭州做网站的公司有哪些,国外有哪些网站可以做电商,内江网站制作,wordpress 前台不显示期刊:Neural Networks | Journal | ScienceDirect.com by Elsevier 年份:2023 代码:https://github.com/Lature-Yang/BASeg 摘要 语义分割是自动驾驶领域街道理解任务的重要组成部分。现有的各种方法要么专注于通过聚合全局或多尺度上下文…

期刊:Neural Networks | Journal | ScienceDirect.com by Elsevier

年份:2023

代码:https://github.com/Lature-Yang/BASeg

摘要

语义分割是自动驾驶领域街道理解任务的重要组成部分。现有的各种方法要么专注于通过聚合全局或多尺度上下文信息来构建对象内部的一致性,要么简单地将语义特征与边界特征相结合来细化对象细节。尽管令人印象深刻,但大多数都忽略了内部对象和边界之间的长程依赖关系。本文提出一种边界感知网络(BASeg)用于语义分割,利用边界信息作为指导上下文聚合的重要线索。具体而言,在BASeg中提出了边界细化模块(Boundary Refined Module, BRM),通过骨架中的高层多尺度语义特征来细化Canny检测器粗粒度的底层边界特征;在此基础上,进一步提出了上下文聚合模块(Context Aggregation Module, CAM),以捕获边界区域与目标内部像素之间的长程依赖关系,实现相互增益并增强类内一致性。此外,所提出方法可以插入到其他CNN主干中以较小的计算预算获得更高的性能,并在数据集ADE20K、Cityscapes和CamVid上分别获得了45.72%、81.2%和77.3%的mIoU。与一些最新的基于resnet101的分割方法相比,大量的实验证明了该方法的有效性。

Introduction

主要贡献

  • 针对语义分割问题,提出了由边界特征、语义特征和聚合特征组成的语义分割框架BASeg,该框架采用基于注意力的机制来引导边界特征的上下文聚合。
  • 将边界细化模块(BRM)集成到BASeg中,从Canny检测器获得的粗轮廓中生成显著的细化边界信息。
  • 在Cityscapes和CamVid等公共驾驶场景数据集和ADE20K等语义数据集上进行了广泛的实验,证明了所提出模型的优越性能。

Method

网络架构

  • BASeg网络由边界流、语义流和聚合流组成,利用边界上下文信息来分割对象。
  • 边界流用于预测给定图像的二值边界,语义流用于生成语义特征图,聚合流用于捕获语义特征图和边界特征图之间的长距离依赖。
  • 网络架构包括使用ResNet101作为主干网络,ASPP(Atrous Spatial Pyramid Pooling)模块用于提取空间信息,以及引入全局平均池化分支以提供图像级信息。

主要组件: 

  • AGB:注意门块,过滤噪声并增强更高层级特征的细节
  • ASPP:Atrous空间金字塔池,融合多尺度特征
  • CAM:上下文聚合模块,用于捕获边界区域与对象内部像素之间的长距离依赖关系,实现相互增益并增强类内一致性。
  • BRM:边界细化模块,用于通过高级多尺度语义特征来细化Canny检测器粗略检测到的低级边界特征。
  • Canny:边缘检测器

2.1 Boundary Refine Module(BRM)

提升从Canny边缘检测器获得的粗略边界特征,并将其与深层的语义特征结合起来,以便于网络能够更准确地识别和细化对象的边界。

AGB中,特征信号X(来自Canny检测的轮廓特征)和门控信号G(来自语义特征图的高级特征)被结合起来,以增强边界区域的特征。

2.2 Context Aggregation Module (CAM)

负责捕获边界区域与对象内部像素之间的长距离依赖关系,以增强语义分割的性能。

计算过程:

  1. 特征转换:CAM通过三个1×1卷积层将语义特征F和边界特征B转换为三个新的特征图Q (Query), K (Key), V (Value)。这有助于减少参数数量和计算成本。
  2. 亲和力矩阵计算:通过计算Key和Query之间的亲和力矩阵S,来衡量不同像素间的相互影响。亲和力矩阵S是通过Key和Query的矩阵乘法以及Softmax函数得到的。
  3. 注意力机制:亲和力矩阵S反映了像素间的相关性,通过Softmax函数进行归一化处理,以突出显示重要像素对其他像素的影响。
  4. 特征适应:对亲和力矩阵S应用另一个1×1卷积层进行特征适应,以进一步优化特征表示。
  5. 上下文聚合:利用亲和力矩阵和Value特征图V,通过元素级求和操作,聚合输入的语义特征图和上下文注意力图,生成聚合后的特征图F。

 2.3 Loss function

用来衡量模型预测与真实标签之间的差异,并指导网络训练过程中的参数更新。BASeg采用了一个多任务损失函数,它联合了三个独立的损失来优化网络的不同部分:

1. body loss:计算了网络对每个像素预测的类别概率与真实标签之间的差异。

2. bound loss:衡量了预测的边界与真实边界标签之间的差异,有助于细化边界区域的分割。

 3. 辅助损失:像素级交叉熵损失,用于对选定的中间层特征进行辅助监督,以帮助网络学习更泛化的特征表示。中间层 F4 施加辅助监督来训练模型、

4. 联合损失:

http://www.yayakq.cn/news/754926/

相关文章:

  • 小说写作网站如何修改wordpress模板
  • 泉州北京网站建设自建网站如何被百度收录
  • 我公司要网站建设品牌企划
  • 网页站点西安抖音seo
  • 观澜小学 网站建设wordpress增加阅读量
  • 厦门图书馆网站建设微信小网站制作
  • seo整站优化 wordpress网站制作案例流程图
  • 宁波高质量品牌网站设计厂家购物网站asp源码
  • 企业产品宣传册制作百度seo收录
  • 如何选择o2o网站建设dns设置 看国外网站
  • 自己做网站用花钱么网站和网站的app
  • 闸北区网站建设网页设php 网站后台管理系统
  • 怎么将自己做的网站发到网上去pinfinity wordpress主题
  • 如何更改网站备案号毕业设计做的网站抄袭
  • 戚墅堰做网站温州企业网站建设费用
  • 企业网站开源学做网站论坛视频下载
  • 解析域名就可以做网站温州网络公司推广
  • 做徽章的网站成都创意设计公司
  • 深圳市工商网上办事大厅无锡网站排名优化报价
  • 威海网站建设在哪网站开发 方案
  • 住房城乡建设部门户网站网站优化多少钱
  • 为什么做游戏网站被封网站制作在哪找
  • 如何建立自己推广网站中国机械外协加工网
  • 哪个旅游网站做的比较好做图软件ps下载网站有哪些
  • 龙岩做网站哪家最好维护网站都干什么
  • 资阳网站建设资阳商标设计网址
  • 网站开发毕设文档wordpress 提取文章段落
  • 济宁市网站建设手机端网站尺寸规范
  • 深圳市建设工程造价管理站专业的大良网站建设
  • 安徽省工程建设协会网站个人网页制作模板html