当前位置: 首页 > news >正文

网站seo检测网站押金收回怎么做分录

网站seo检测,网站押金收回怎么做分录,wordpress文章分类设置,0731网站【RISC-V设计-05】- RISC-V处理器设计K0A之GPR 文章目录 【RISC-V设计-05】- RISC-V处理器设计K0A之GPR1.简介2.设计顶层3.内部结构4.端口说明5.设计代码6.总结 1.简介 通用寄存器(General Purpose Register)是处理器设计中的重要组成部分,在…

【RISC-V设计-05】- RISC-V处理器设计K0A之GPR

文章目录

  • 【RISC-V设计-05】- RISC-V处理器设计K0A之GPR
    • 1.简介
    • 2.设计顶层
    • 3.内部结构
    • 4.端口说明
    • 5.设计代码
    • 6.总结

1.简介

通用寄存器(General Purpose Register)是处理器设计中的重要组成部分,在数据处理和指令执行过程中发挥着关键作用,对于计算机系统的整体性能和效率有着至关重要的影响。通用寄存器用于传送和暂存数据,也可参与算术逻辑运算,并保存运算结果。本模块内含有15个32bit的寄存器,一个写操作端口,两个读操作端口,读写可同时操作。

2.设计顶层

3.内部结构

4.端口说明

序号端口方向位宽说明
1core_clkinput1内核时钟
2idu2gpr_weinput1通用寄存器组写使能,高有效
3idu2gpr_waddrinput4通用寄存器组写地址
4idu2gpr_wdatainput32通用寄存器组写数据
5idu2gpr_raddr1input4通用寄存器组读地址1
6gpr2idu_rdata1output32通用寄存器组读数据1
7idu2gpr_raddr2input4通用寄存器组读地址2
8gpr2idu_rdata2output32通用寄存器组读数据2

5.设计代码

// -------------------------------------------------------------------------------------------------
// Copyright 2024 Kearn Chen, kearn.chen@aliyun.com
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// 
//     http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// -------------------------------------------------------------------------------------------------
// Description :
//             1. General Purpose Register, 32bit * 15 = 480bit
// -------------------------------------------------------------------------------------------------module k0a_core_gpr (input               core_clk       ,input               idu2gpr_we     ,input   [3:0]       idu2gpr_waddr  ,input   [31:0]      idu2gpr_wdata  ,input   [3:0]       idu2gpr_raddr1 ,output  [31:0]      gpr2idu_rdata1 ,input   [3:0]       idu2gpr_raddr2 ,output  [31:0]      gpr2idu_rdata2
);reg  [31:0]  x1_ra;
reg  [31:0]  x2_sp;
reg  [31:0]  x3_gp;
reg  [31:0]  x4_tp;
reg  [31:0]  x5_t0;
reg  [31:0]  x6_t1;
reg  [31:0]  x7_t2;
reg  [31:0]  x8_s0;
reg  [31:0]  x9_s1;
reg  [31:0]  xa_a0;
reg  [31:0]  xb_a1;
reg  [31:0]  xc_a2;
reg  [31:0]  xd_a3;
reg  [31:0]  xe_a4;
reg  [31:0]  xf_a5;wire x1_rd1 = (idu2gpr_raddr1 == 4'h1);
wire x2_rd1 = (idu2gpr_raddr1 == 4'h2);
wire x3_rd1 = (idu2gpr_raddr1 == 4'h3);
wire x4_rd1 = (idu2gpr_raddr1 == 4'h4);
wire x5_rd1 = (idu2gpr_raddr1 == 4'h5);
wire x6_rd1 = (idu2gpr_raddr1 == 4'h6);
wire x7_rd1 = (idu2gpr_raddr1 == 4'h7);
wire x8_rd1 = (idu2gpr_raddr1 == 4'h8);
wire x9_rd1 = (idu2gpr_raddr1 == 4'h9);
wire xa_rd1 = (idu2gpr_raddr1 == 4'ha);
wire xb_rd1 = (idu2gpr_raddr1 == 4'hb);
wire xc_rd1 = (idu2gpr_raddr1 == 4'hc);
wire xd_rd1 = (idu2gpr_raddr1 == 4'hd);
wire xe_rd1 = (idu2gpr_raddr1 == 4'he);
wire xf_rd1 = (idu2gpr_raddr1 == 4'hf);wire x1_rd2 = (idu2gpr_raddr2 == 4'h1);
wire x2_rd2 = (idu2gpr_raddr2 == 4'h2);
wire x3_rd2 = (idu2gpr_raddr2 == 4'h3);
wire x4_rd2 = (idu2gpr_raddr2 == 4'h4);
wire x5_rd2 = (idu2gpr_raddr2 == 4'h5);
wire x6_rd2 = (idu2gpr_raddr2 == 4'h6);
wire x7_rd2 = (idu2gpr_raddr2 == 4'h7);
wire x8_rd2 = (idu2gpr_raddr2 == 4'h8);
wire x9_rd2 = (idu2gpr_raddr2 == 4'h9);
wire xa_rd2 = (idu2gpr_raddr2 == 4'ha);
wire xb_rd2 = (idu2gpr_raddr2 == 4'hb);
wire xc_rd2 = (idu2gpr_raddr2 == 4'hc);
wire xd_rd2 = (idu2gpr_raddr2 == 4'hd);
wire xe_rd2 = (idu2gpr_raddr2 == 4'he);
wire xf_rd2 = (idu2gpr_raddr2 == 4'hf);wire x1_wr  = (idu2gpr_waddr == 4'h1) & idu2gpr_we;
wire x2_wr  = (idu2gpr_waddr == 4'h2) & idu2gpr_we;
wire x3_wr  = (idu2gpr_waddr == 4'h3) & idu2gpr_we;
wire x4_wr  = (idu2gpr_waddr == 4'h4) & idu2gpr_we;
wire x5_wr  = (idu2gpr_waddr == 4'h5) & idu2gpr_we;
wire x6_wr  = (idu2gpr_waddr == 4'h6) & idu2gpr_we;
wire x7_wr  = (idu2gpr_waddr == 4'h7) & idu2gpr_we;
wire x8_wr  = (idu2gpr_waddr == 4'h8) & idu2gpr_we;
wire x9_wr  = (idu2gpr_waddr == 4'h9) & idu2gpr_we;
wire xa_wr  = (idu2gpr_waddr == 4'ha) & idu2gpr_we;
wire xb_wr  = (idu2gpr_waddr == 4'hb) & idu2gpr_we;
wire xc_wr  = (idu2gpr_waddr == 4'hc) & idu2gpr_we;
wire xd_wr  = (idu2gpr_waddr == 4'hd) & idu2gpr_we;
wire xe_wr  = (idu2gpr_waddr == 4'he) & idu2gpr_we;
wire xf_wr  = (idu2gpr_waddr == 4'hf) & idu2gpr_we;assign gpr2idu_rdata1 = ({32{x1_rd1}} & x1_ra) | ({32{x2_rd1}} & x2_sp) |({32{x3_rd1}} & x3_gp) | ({32{x4_rd1}} & x4_tp) |({32{x5_rd1}} & x5_t0) | ({32{x6_rd1}} & x6_t1) |({32{x7_rd1}} & x7_t2) | ({32{x8_rd1}} & x8_s0) |({32{x9_rd1}} & x9_s1) | ({32{xa_rd1}} & xa_a0) |({32{xb_rd1}} & xb_a1) | ({32{xc_rd1}} & xc_a2) |({32{xd_rd1}} & xd_a3) | ({32{xe_rd1}} & xe_a4) |({32{xf_rd1}} & xf_a5) ;assign gpr2idu_rdata2 = ({32{x1_rd2}} & x1_ra) | ({32{x2_rd2}} & x2_sp) |({32{x3_rd2}} & x3_gp) | ({32{x4_rd2}} & x4_tp) |({32{x5_rd2}} & x5_t0) | ({32{x6_rd2}} & x6_t1) |({32{x7_rd2}} & x7_t2) | ({32{x8_rd2}} & x8_s0) |({32{x9_rd2}} & x9_s1) | ({32{xa_rd2}} & xa_a0) |({32{xb_rd2}} & xb_a1) | ({32{xc_rd2}} & xc_a2) |({32{xd_rd2}} & xd_a3) | ({32{xe_rd2}} & xe_a4) |({32{xf_rd2}} & xf_a5) ;always @(posedge core_clk) if(x1_wr) x1_ra <= idu2gpr_wdata;
always @(posedge core_clk) if(x2_wr) x2_sp <= idu2gpr_wdata;
always @(posedge core_clk) if(x3_wr) x3_gp <= idu2gpr_wdata;
always @(posedge core_clk) if(x4_wr) x4_tp <= idu2gpr_wdata;
always @(posedge core_clk) if(x5_wr) x5_t0 <= idu2gpr_wdata;
always @(posedge core_clk) if(x6_wr) x6_t1 <= idu2gpr_wdata;
always @(posedge core_clk) if(x7_wr) x7_t2 <= idu2gpr_wdata;
always @(posedge core_clk) if(x8_wr) x8_s0 <= idu2gpr_wdata;
always @(posedge core_clk) if(x9_wr) x9_s1 <= idu2gpr_wdata;
always @(posedge core_clk) if(xa_wr) xa_a0 <= idu2gpr_wdata;
always @(posedge core_clk) if(xb_wr) xb_a1 <= idu2gpr_wdata;
always @(posedge core_clk) if(xc_wr) xc_a2 <= idu2gpr_wdata;
always @(posedge core_clk) if(xd_wr) xd_a3 <= idu2gpr_wdata;
always @(posedge core_clk) if(xe_wr) xe_a4 <= idu2gpr_wdata;
always @(posedge core_clk) if(xf_wr) xf_a5 <= idu2gpr_wdata;endmodule

6.总结

本文实现了一个基本的通用寄存器组,支持一写双读操作。对于一写双读操作,这可以显著提高数据处理的并行性,在诸如流水线处理等场景中能够提高系统的性能。比如,在一个 CPU 的指令执行阶段,可能同时需要读取两个寄存器的值进行运算,而新的数据又可以在同一周期被写入另一个寄存器。

每个寄存器都是32位宽,包含0地址寄存器,总共有16个的寄存器。设计中的寄存器全部采用无复为寄存器,优化时序,减少面积。无复位寄存器的选择可能会简化电路结构,但也需要在系统初始化和异常处理时特别注意数据的初始状态和稳定性。例如,在系统启动时,需要通过软件初始化来确保寄存器中的值是合理的起始值。事实上,软件也不应该依赖于寄存器的默认值。

在综合时,工具会为15个寄存器插入时钟门控Clocke Gating Cell,以降低动态功耗。由于汇编代码中使用的为ABI名称,所以寄存器命名带有ABI名称,方便调试和查看。通过逐一对每个寄存器编写逻辑代码,避免了对X0寄存器的译码,减少综合后电路面积。

http://www.yayakq.cn/news/346394/

相关文章:

  • 怎么制作一个网站及小程序做网站设计需求
  • 律师推广网站排名织带东莞网站建设技术支持
  • 网站开发一般需要多久优化大师手机版
  • wordpress模板站如何安装设计电影完整版视频在线
  • 网站优化seo技术网站皮肤是怎么做的
  • 关于做网站ppt织梦怎么做企业网站
  • 门户网站建设询价公告国外服务器租赁
  • 对网站建设有什么样意见顺企网怎么发布公司信息
  • 代码网站推荐《网站开发实例》pdf下载
  • 四川城乡建设部网站首页学校网站建设培训
  • 建设银行朝阳支行网站手机端原神
  • 安徽省建设厅网站域名永久免费crm客户管理系统
  • 网站篡改搜索引擎js王业美
  • 网约车后台平台网站建设html5模板免费下载
  • 手工做火枪的网站牛网站
  • 织梦网站数据库备份文件夹安阳设计工厂
  • 如果建手机网站上海千途建站
  • 什么网站做禽苗好的网站安徽省住房和城乡建设局
  • 阿里云建站后台建站做ppt的软件怎么下载网站
  • 南昌高端网站开发绍兴建设企业网站
  • 设计做网站通用cms的源代码国内好的网站设计
  • 黑龙江企业网站设计团队新乡网站开发公司
  • 微网站建设 上海创建一个公司网站需要多少钱
  • 电脑网站开发优化关键词的方法
  • 怎样更换网站cmslogo注册商标流程
  • 网站中的文章可以做排名吗沈阳网站建设方法
  • 建设信用卡网站是什么wordpress hpkp
  • 怎样建一个个人网站做网站 空间还是服务器
  • 重庆业务外包网站建设哈尔滨市建工建设有限公司
  • 企业注册百家号可以做网站吗网站设计作品案例