当前位置: 首页 > news >正文

做本地网站能做吗资深的网站建设

做本地网站能做吗,资深的网站建设,笔记本做网站服务器,百度指数分析案例Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…

Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~
💥💥个人主页:奋斗的小羊
💥💥所属专栏:C语言

🚀本系列文章为个人学习笔记,在这里撰写成文一为巩固知识,二为展示我的学习过程及理解。文笔、排版拙劣,望见谅。


目录

  • 前言
  • 一、排序算法
    • 1、归并排序
    • 2、归并非递归
    • 3、计数排序
    • 4、排序算法复杂度及稳定性分析
  • 总结

前言

本文将继续介绍两种高效的排序算法——归并排序、计算排序。
归并排序在一些场合下(如外部排序)非常有效,当数据量非常大且无法全部加载到内存时,可以将其分块处理。
而计数排序是一种非比较排序算法,适用于特定范围内的整数排序,在许多数情况下计算排序可以秒杀我们介绍过的所有排序。


一、排序算法

1、归并排序

| 算法思路:

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用,将已有序的子序列合并,得到完全有序的序列,即先使每个子序列有序,再使子序列间段有序。

在这里插入图片描述

动图演示:

请添加图片描述

代码实现:

//子函数
void _MergeSort(int* arr, int* tmp, int begin, int end)
{if (begin == end){return;}int mid = (begin + end) / 2;//[begin, mid]  [mid + 1, end]_MergeSort(arr, tmp, begin, mid);_MergeSort(arr, tmp, mid + 1, end);int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (arr[begin1] < arr[begin2]){tmp[i++] = arr[begin1++];}else{tmp[i++] = arr[begin2++];}}while (begin1 <= end1){tmp[i++] = arr[begin1++];}while (begin2 <= end2){tmp[i++] = arr[begin2++];}memcpy(arr + begin, tmp + begin, (end - begin + 1) * sizeof(int));
}//归并排序
void MergeSort(int* arr, int n)
{int* tmp = (int*)malloc(n * sizeof(int));if (tmp == NULL){perror("malloc fail");return;}_MergeSort(arr, tmp, 0, n - 1);free(tmp);tmp = NULL;
}

归并排序有几个需要特别注意的点:

  • 分割区间一定要按[begin, mid] [mid + 1, end]分,不然会导致死循环
  • memcpy(arr + begin, tmp + begin, (end - begin + 1) * sizeof(int));
  • 一定是归并一组拷贝一组,因为如果存在越界的情况还整体拷贝肯定会出错
  • 归并排序算法的时间复杂度是:O(N*logN),空间复杂度是:O(N).

2、归并非递归

递归改非递归有两种办法,一种是用栈模拟,一种是用循环处理。

上篇文章中快排非递归我们是利用栈实现的,但是归并的非递归使用栈解决不了,因为快排的递归过程是一个类似前序遍历的过程,而归并是一个类似后续的过程,它是先将区间循环分割成只有一个数据,再反向进行归并,栈是做不到这一点的。
所以归并的非递归我们考虑用循环来实现。

我们可以直接将原数组一一归并,再二二归并,再四四归并……

请添加图片描述

//归并非递归
void MergeSortNonR(int* arr, int n)
{int* tmp = (int*)malloc(n * sizeof(int));if (tmp == NULL){perror("malloc fail");return;}//gap是每组归并数据的个数int gap = 1;while (gap < n){//i表示每组归并的起始位置for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;while (begin1 <= end1 && begin2 <= end2){if (arr[begin1] < arr[begin2]){tmp[j++] = arr[begin1++];}else{tmp[j++] = arr[begin2++];}}while (begin1 <= end1){tmp[j++] = arr[begin1++];}while (begin2 <= end2){tmp[j++] = arr[begin2++];}//memcpy(arr + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap *= 2;//一一归,二二归,四四归}free(tmp);tmp = NULL;
}
  • memcpy(arr + i, tmp + i, (end2 - i + 1) * sizeof(int));
  • for (int i = 0; i < n; i += 2 * gap)
  • int begin2 = i + gap, end2 = i + 2 * gap - 1;

但是上面的代码还不完善,仅限2的次方个数的数据归并,如果不是2的次方个数则会越界。越界无非下面三种情况:

  1. [begin1, end1] [begin2, end2 ]
  2. [begin1, end1] [begin2 , end2 ]
  3. [begin1, end1 ] [begin2 , end2 ]

其中第二种和第三种可以归为一类,因为begin2越界说明我们需要排序的数据已经排好序了,越界的部分不是我们的区间我们根本不用管,直接退出循环就行了。
而第一种情况只需要处理一下就好,让end2变成n - 1就行了。

代码示例:

//归并非递归
void MergeSortNonR(int* arr, int n)
{int* tmp = (int*)malloc(n * sizeof(int));if (tmp == NULL){perror("malloc fail");return;}//gap是每组归并数据的个数int gap = 1;while (gap < n){//i表示每组归并的起始位置for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;//第二组都越界,不存在,不是我们需要排序的数据if (begin2 >= n){break;}//begin2没越界,end2越界,只需要修正一下就好if (end2 >= n){end2 = n - 1;}int j = i;while (begin1 <= end1 && begin2 <= end2){if (arr[begin1] < arr[begin2]){tmp[j++] = arr[begin1++];}else{tmp[j++] = arr[begin2++];}}while (begin1 <= end1){tmp[j++] = arr[begin1++];}while (begin2 <= end2){tmp[j++] = arr[begin2++];}//归并一次拷贝一次memcpy(arr + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap *= 2;}free(tmp);tmp = NULL;
}

3、计数排序

计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。其排序步骤为:

1. 统计相同元素出现的次数,将统计到的次数作为count数组以元素值对应下标处的值
2. 根据统计的结果将序列回收到原来的序列中
3. 动态开辟的count数组要初始化为全0

本质: 利用count数组的自然序号排序

为了保证开辟大小合适的count数组,我们可以用待排数据中最大值减最小值加一的方法来确定一个合适的范围(max - min + 1)。
然后再用元素值减去最小值的方法来和count数组形成相对映射关系(arr[i] - min),得到的值是几就在数组对应下标位置递增。
最后一步排序的时候不要忘了在原数组中插入的值还要加上最小值,并且count数组中下标对应位置的值是几就循环几次,如果对应位置是0的话说明原数组没有这个下标数,就不进入循环。

大致思想如下:

请添加图片描述

代码如下:

//计数排序
void CountSort(int* arr, int n)
{int min = arr[0];int max = arr[0];for (int i = 1; i < n; i++){if (arr[i] < arr[min]){min = arr[i];}if (arr[i] > arr[max]){max = arr[i];}}int range = max - min + 1;int* count = (int*)calloc(range, sizeof(int));if (count == NULL){perror("calloc fail");return;}//统计次数for (int i = 0; i < n; i++)//遍历原数组{count[arr[i] - min]++;}//排序int j = 0;for (int i = 0; i < range; i++)//遍历count数组{while (count[i]--){arr[j++] = i + min;}}free(count);count = NULL;
}

计数排序的时间复杂度为:O(N + range),相比较前几种排序算法,计数排序效率是非常高的,但速度快的同时也有空间消耗,计数排序的空间复杂度为:O(range),所以计数排序也算是拿空间换时间。

计数排序虽然相对其他排序算法快且稳定,但也存在一些缺陷:

  • 只能排整数,不能排浮点数
  • 要求数据比较集中,不然空间开销太大

4、排序算法复杂度及稳定性分析

稳定性: 如果待排序数据中有多个相同的的数据,若经过排序这些相同的数据相对位置保持不变,则称这种排序算法是稳定的。

排序算法时间复杂度空间复杂度稳定性
插入排序O(N^2)O(1)稳定
希尔排序O(N^1.3)O(1)不稳定
选择排序O(N^2)O(1)不稳定
堆排序O(N*logN)O(1)不稳定
冒泡排序O(N^2)O(1)稳定
快速排序O(N*logN)O(logN)不稳定
归并排序O(N*logN)O(N)稳定
计数排序O(N + range)O(range)稳定

总结

  • 这些排序算法各有千秋,在某些特定的情况下某个算法的性能尤为突出,在一些复杂的排序中为了追求性能往往使用混合排序,这使得性能大大提高。
http://www.yayakq.cn/news/378798/

相关文章:

  • 微信后台怎么做微网站青岛谷歌网站建设
  • 景区网站建设教程wordpress 网站地图
  • 成都锦江区网站建设公司潍坊 公司 网站
  • 电子商务网站建设价格海宁市住房和城乡建设网站
  • 网站开发的私活网络营销平台排名
  • 可以做家教的网站有哪些购物商城排名
  • 网站建设漳州百度图片搜索
  • 帮别人做网站用织梦模板行吗大数据培训机构排名前十
  • ps网站建设教程做网站空间多大
  • 装修设计网站哪个好用免费制作手机网站
  • 电子商务网站域名网页设计基础课心得体会2000字
  • 企业网站开发怎么样完整网站开发
  • 青岛 网站科技公司怎样做jsp网站
  • 网站后台构建深圳市企业网站seo联系方式
  • 临沂罗庄做网站如何去建立和设计一个公司网站
  • 响应网站怎么做教学视频如何设计中文网站
  • 今天杭州新闻最新消息北京优化网站推广
  • oppo手机网站建设需求分析在线直播网站开发实战项目
  • 岳阳网站开发培训珠宝购物网站的建设
  • 漫画网站模板电话号码查询企业
  • 易语言可以做api网站对接吗163 com免费邮箱注册
  • 出售企业网站备案资料二十条优化措施全文
  • 沈阳定制网站方案学软件开发哪所学校好
  • 汽车电商网站建设上海品质网站建设
  • 做网站的实验总结沧州哪家做网站好
  • 手机移动端网站开发wordpress数据库写什么
  • 网站挂马检测流程图网页制作实训总结800字
  • 360免费建站网址是什么网络推广文案招聘
  • 做视频网站要什么软件有哪些湘潭做网站公司
  • 建设网站大概需要多少钱北京好的网站设计公司