当前位置: 首页 > news >正文

17一起做网站株洲个人网站不能放广告怎么赚钱

17一起做网站株洲,个人网站不能放广告怎么赚钱,设计工作室的经营范围,机电建设工程施工网站四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵) 在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。 四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器…

四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)

在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。
四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器人学、计算机图形学和航空航天 等领域。

四元数的定义

一个四元数 q 由四个实数组成:
q = w + x i + y j + z k q=w+xi+yj+zk q=w+xi+yj+zk
其中:w,x,y,z 是实数;i,j,k 是虚单位,满足特定的乘法规则

旋转的基本表示方式

方式表示方法优缺点
欧拉角(Euler Angles)(α,β,γ) 对应绕 X, Y, Z 轴的旋转优点:直观易理解,和现实生活的旋转方式类似。缺点:存在万向锁(Gimbal Lock)问题,计算复杂。
旋转矩阵(Rotation Matrix)3×3 矩阵优点:适用于线性代数计算,方便复合旋转。缺点:需要存储 9 个值,数值误差累积会导致非正交性。
四元数(Quaternion)q=w+xi+yj+zk优点:旋转计算简单,存储更紧凑(只需要 4 个数),避免万向锁,插值平滑。缺点:不直观,不容易手动调整。

旋转四元数的定义

一个 旋转四元数q 表示围绕单位向量 (x,y,z) 旋转角度 θ 的旋转:
q = cos ⁡ θ 2 + sin ⁡ θ 2 ( x i + y j + z k ) q=\cos\frac{\theta}{2}+\sin\frac{\theta}{2}(x\mathbf{i}+y\mathbf{j}+z\mathbf{k}) q=cos2θ+sin2θ(xi+yj+zk)
或写成向量形式:
q = ( cos ⁡ θ 2 , x sin ⁡ θ 2 , y sin ⁡ θ 2 , z sin ⁡ θ 2 ) q=\left(\cos\frac{\theta}{2},x\sin\frac{\theta}{2},y\sin\frac{\theta}{2},z\sin\frac{\theta}{2}\right) q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)
其中:θ 是旋转角度
(x,y,z) 是旋转轴(必须是单位向量)
(xi,yj,zk) 是四元数的虚部,表示旋转方向
注意:旋转四元数必须是单位四元数,即满足:
∣ q ∣ = w 2 + x 2 + y 2 + z 2 = 1 |q|=\sqrt{w^2+x^2+y^2+z^2}=1 q=w2+x2+y2+z2 =1

使用四元数进行 3D 旋转

假设有一个点 v = ( v x , v y , v z ) \mathbf{v}=(v_x,v_y,v_z) v=(vx,vy,vz),我们想用四元数 q 旋转它。方法如下:

  • 将点转换为纯四元数(虚部存储向量坐标)
    p = ( 0 , v x , v y , v z ) p=(0,v_x,v_y,v_z) p=(0,vx,vy,vz)
  • 计算旋转后的点
    p ′ = q p q − 1 p^{\prime}=qpq^{-1} p=qpq1
    其中: q − 1 q^{-1} q1是四元数的逆(单位四元数的逆就是它的共轭)
    旋转后的点 p ′ p^{\prime} p也是一个纯四元数,其中的虚部给出新坐标。
  • 单位四元数的逆
    q − 1 = q ∗ = ( cos ⁡ θ 2 , − x sin ⁡ θ 2 , − y sin ⁡ θ 2 , − z sin ⁡ θ 2 ) q^{-1}=q^*=(\cos\frac{\theta}{2},-x\sin\frac{\theta}{2},-y\sin\frac{\theta}{2},-z\sin\frac{\theta}{2}) q1=q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)

例程(C语言)

旋转 (1, 0, 0) 向量 绕 Y 轴旋转 90°。
计算后,结果应该接近 (0, 0, -1),即 X 轴向量变成 Z 轴负方向。

#include <stdio.h>
#include <math.h>// 定义四元数结构体
typedef struct {double w, x, y, z;
} Quaternion;// 定义向量结构体
typedef struct {double x, y, z;
} Vector3;// 归一化四元数(单位四元数)
Quaternion normalize(Quaternion q) {double magnitude = sqrt(q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z);q.w /= magnitude;q.x /= magnitude;q.y /= magnitude;q.z /= magnitude;return q;
}// 计算四元数的共轭
Quaternion conjugate(Quaternion q) {Quaternion conj = {q.w, -q.x, -q.y, -q.z};return conj;
}// 计算两个四元数的乘法
Quaternion multiply(Quaternion q1, Quaternion q2) {Quaternion result;result.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;result.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;result.y = q1.w * q2.y - q1.x * q2.z + q1.y * q2.w + q1.z * q2.x;result.z = q1.w * q2.z + q1.x * q2.y - q1.y * q2.x + q1.z * q2.w;return result;
}// 旋转向量 v 使用四元数 q
Vector3 rotate_vector(Vector3 v, Quaternion q) {Quaternion p = {0, v.x, v.y, v.z}; // 将向量转换为纯四元数Quaternion q_conj = conjugate(q);  // 计算四元数共轭// 计算旋转后的四元数 p' = q * p * q^(-1)Quaternion temp = multiply(q, p);Quaternion rotated = multiply(temp, q_conj);// 结果的虚部即为旋转后的向量Vector3 result = {rotated.x, rotated.y, rotated.z};return result;
}// 生成绕 (ux, uy, uz) 轴旋转 theta 角度的四元数
Quaternion from_axis_angle(double ux, double uy, double uz, double theta) {Quaternion q;double half_theta = theta * M_PI / 360.0; // 角度转弧度并除以 2double sin_half_theta = sin(half_theta);q.w = cos(half_theta);q.x = ux * sin_half_theta;q.y = uy * sin_half_theta;q.z = uz * sin_half_theta;return normalize(q);
}int main() {// 定义一个向量 (1, 0, 0)Vector3 v = {1, 0, 0};// 绕 Y 轴旋转 90 度的四元数Quaternion q = from_axis_angle(0, 1, 0, 90);// 旋转向量Vector3 rotated_v = rotate_vector(v, q);// 输出旋转后的结果printf("旋转后向量: (%f, %f, %f)\n", rotated_v.x, rotated_v.y, rotated_v.z);return 0;
}

代码解析

  1. 定义数据结构
    Quaternion 结构体存储四元数(w, x, y, z)
    Vector3 结构体存储 3D 向量(x, y, z)
  2. 归一化四元数
    旋转四元数必须是 单位四元数,所以 normalize() 函数保证四元数的模长为 1。
  3. 计算四元数共轭
    conjugate() 计算 (对于单位四元数,逆就是共轭)。
  4. 四元数乘法
    multiply() 执行两个四元数的乘法,用于计算旋转变换。
  5. 向量旋转
    rotate_vector() 采用公式 计算旋转后的向量。
  6. 从轴-角度转换为四元数
    from_axis_angle() 计算沿任意轴旋转 theta 角度的旋转四元数。

如预期,原来的 (1, 0, 0) 经过 绕 Y 轴旋转 90° 后变成了 (0, 0, -1)

http://www.yayakq.cn/news/321352/

相关文章:

  • wordpress主题仿逛丢昆明网站seo优化
  • 网站建设发展史网站建设培训四川
  • 哪家网站制作 优帮云商城购物平台
  • 网站托管代运营网站源码在哪
  • 上海建材网站建设wordpress 云备份数据库
  • 免费网站app源码包装设计说明模板
  • 网站建议公司营销网站开发isuos
  • 有没有免费网站制作wordpress免签约
  • 怎样用自己的电脑,做网站自己做的视频网站视频加载慢
  • 合肥网站建设平台网站源码什么意思
  • 乐山市做网站的公司网站排名不稳定
  • 深圳网站设计联系电话自己搞个网站
  • 静态网页设计实训报告温州seo优化
  • 潍坊建公司网站wordpress打开好慢
  • 采集微信公众号 做网站个人网站用凡科建站好吗
  • 东莞专业网站推广方式wordpress ajax 分页
  • 爱 做 网站北京建网站公司怎么样
  • 资讯是做网站还是公众号建设厅八大员在哪个网站查询
  • hishopseo3的空间构型
  • 家居企业网站建设服务做网站要注意哪些方面
  • 网站建设管理工作情况的通报室内装饰设计师国家职业技能标准
  • 织梦仿商城网站网站怎么做子分类
  • 网站建设如何创建框架页面如何搭建一个局域网
  • 湖南网站建设 安全还踏实磐石网络企业网站建站
  • 网站运营策划是什么南京网站开发南京乐识专心
  • 自己怎样创建网站惠州seo关键字排名
  • 网站设计网站源码深圳福田区房子价格
  • 大兴企业官网网站建设报价宁国做网站的
  • 网站建设装什么系统手机回收网站开发
  • 兼职工厂网站建设网站seo置顶