当前位置: 首页 > news >正文

专业的徐州网站建设vps搭建wordpress个人

专业的徐州网站建设,vps搭建wordpress个人,分类目录不要前缀wordpress,百度官方营销推广平台官网🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 基于生成对抗网络(GAN)人脸图像生成 这周将构建并训练一个生成对抗网络(GAN)来生成人脸图像。 GAN 原理概述 …
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

基于生成对抗网络(GAN)人脸图像生成

这周将构建并训练一个生成对抗网络(GAN)来生成人脸图像。

GAN 原理概述

生成对抗网络通过两个神经网络的对抗性结构来实现目标:

  • 生成器(G):输入随机噪声,通过学习数据的分布模式生成类似真实图像的输出。
  • 判别器(D):用来判断输入的图像是真实的还是生成器生成的。

训练过程中,生成器尝试欺骗判别器,生成逼真的图像,而判别器则不断优化,以区分真实图像与生成图像。这种对抗过程最终使生成器的生成能力逐渐逼近真实图像。

环境准备

首先导入相关库并设置随机种子以确保结果的可复现性。

import random
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import matplotlib.pyplot as plt
import numpy as np

超参数设置

在训练GAN之前,首先定义一些关键的超参数:

  • batch_size:每个批次的样本数。
  • image_size:图像的大小,用于调整输入数据的尺寸。
  • nz:潜在向量大小,即生成器的输入维度。
  • ngfndf:分别控制生成器和判别器中的特征图数量。
  • num_epochs:训练的总轮数。
  • lr:学习率。
batch_size = 128
image_size = 64
nz = 100
ngf = 64
ndf = 64
num_epochs = 50
lr = 0.0002
beta1 = 0.5

数据加载

通过torchvision.datasets.ImageFolder加载数据,并使用 torch.utils.data.DataLoader 进行批量处理。数据加载时,通过转换函数调整图像大小,并对其进行归一化处理。

dataroot = "data/GANdata"
dataset = dset.ImageFolder(root=dataroot,transform=transforms.Compose([transforms.Resize(image_size),transforms.CenterCrop(image_size),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)

网络结构定义

1. 生成器

生成器将随机噪声(潜在向量)通过一系列转置卷积层转换为图像。每层使用ReLU激活函数,最后一层用Tanh激活函数,将输出限制在 [-1, 1]

class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.main = nn.Sequential(nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),nn.BatchNorm2d(ngf * 8),nn.ReLU(True),nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 4),nn.ReLU(True),nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 2),nn.ReLU(True),nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf),nn.ReLU(True),nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False),nn.Tanh())def forward(self, input):return self.main(input)

2. 判别器

判别器为卷积网络,通过一系列卷积层提取图像特征。每层使用LeakyReLU激活函数,最终输出一个值(真实为1,生成为0)。

class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.main = nn.Sequential(nn.Conv2d(3, ndf, 4, 2, 1, bias=False),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 2),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 4),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 8),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),nn.Sigmoid())def forward(self, input):return self.main(input)

训练过程

训练分为两个部分:判别器和生成器的更新。

1. 判别器的训练

判别器首先接收真实图像样本,计算输出与真实标签的误差。然后判别器接收生成器生成的假图像,再计算输出与假标签的误差。最终判别器的损失是两者的总和。

output = netD(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()fake = netG(noise)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label.fill_(fake_label))
errD_fake.backward()

2. 生成器的训练

生成器的目标是欺骗判别器,因此其损失函数基于判别器将生成图像误识为真实的概率值。

output = netD(fake).view(-1)
errG = criterion(output, label.fill_(real_label))
errG.backward()

训练监控与可视化

在这里插入图片描述

训练时,我们记录生成器和判别器的损失,并生成一些样本图像来查看生成器的效果。

plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G")
plt.plot(D_losses, label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.savefig('Generator and Discriminator Loss During Training.png')

在这里插入图片描述

结果可视化

训练结束后,我们将真实图像与生成图像对比,以检验生成器的效果。

plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(), (1, 2, 0)))plt.subplot(1, 2, 2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1], (1, 2, 0)))
plt.savefig('Fake Images.png')
plt.show()

在这里插入图片描述

总结

这周学习构建了一个深度卷积生成对抗网络(DCGAN),用于生成逼真的人脸图像,通过这周学习对对抗网路的构建有了更深的了解与运用

http://www.yayakq.cn/news/434350/

相关文章:

  • 网站开发什么语音最好工具
  • flash 网站模板长沙抖音推广代运营公司
  • 怎样做网站地图做很多网站
  • 镇江网站制作企业网站做网站坚持多少年会有起色
  • 网站后台html页面wordpress登录页面模板下载
  • 在一呼百应上做网站行吗少儿戏曲知识 网站建设
  • 网站提示风险网络优化工程师
  • 制作一个简单网站wordpress ishome
  • 红河做网站海南直聘网
  • 前台网站模板wordpress 标签图标
  • 陕西网站制作电话wordpress 慢 google
  • 行业网站开发运营方案中企动力z邮箱登陆
  • 专业官方网站建设柳市专业网站托管
  • 专业的环保行业网站开发网站建设运营有限公司
  • 完全免费建站系统成都装修公司十大排名
  • 东莞 营销网站Pc端网站是什么意思
  • 丹阳建设工程管理处网站个人网站 备案 广告
  • 北京市公司网站制作如何利用视频网站做数字营销推广
  • 网站建设亿金手指科杰网站挂到国外服务器地址
  • 提供小企业网站建设互联网网站建设新闻
  • 网站开发 网页设计外包公司注册需要什么
  • 手机商城网站建设策划方案范文网站设计 线框图 怎么画
  • 平台网站建设步骤做网站金山
  • 中国六冶的网站谁做的原单手表网站
  • 怎么查网站的外链数量游戏网站怎么制作
  • wordpress视频曹鹏网站优化需要工具
  • 深圳品牌网站制作公司哪家好网站建设外包公司排名
  • 长沙建设网站公司会员卡管理系统自己做
  • 自己做电影网站犯法吗图片链接怎么生成
  • 做网站需要投资多少钱wordpress导入 ftp