当前位置: 首页 > news >正文

商丘网站建设有限公司网站正在建设中亚洲

商丘网站建设有限公司,网站正在建设中亚洲,学会网站建设方案,佛山网站建设永网人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示) FaceNet的简介Facenet的实现思路训练部分 FaceNet的简介 Facenet的实现思路 import torch.nn as nndef conv_bn(inp, oup, stride 1):return nn.Sequential(nn.Conv2d(inp, oup, 3, stride…

人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)

  • FaceNet的简介
  • Facenet的实现思路
  • 训练部分

在这里插入图片描述

FaceNet的简介

在这里插入图片描述

Facenet的实现思路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import torch.nn as nndef conv_bn(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),nn.BatchNorm2d(oup),nn.ReLU6())def conv_dw(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),nn.BatchNorm2d(inp),nn.ReLU6(),nn.Conv2d(inp, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),nn.ReLU6(),)class MobileNetV1(nn.Module):def __init__(self):super(MobileNetV1, self).__init__()self.stage1 = nn.Sequential(# 160,160,3 -> 80,80,32conv_bn(3, 32, 2), # 80,80,32 -> 80,80,64conv_dw(32, 64, 1), # 80,80,64 -> 40,40,128conv_dw(64, 128, 2),conv_dw(128, 128, 1),# 40,40,128 -> 20,20,256conv_dw(128, 256, 2),conv_dw(256, 256, 1),)self.stage2 = nn.Sequential(# 20,20,256 -> 10,10,512conv_dw(256, 512, 2),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),)self.stage3 = nn.Sequential(# 10,10,512 -> 5,5,1024conv_dw(512, 1024, 2),conv_dw(1024, 1024, 1),)self.avg = nn.AdaptiveAvgPool2d((1,1))self.fc = nn.Linear(1024, 1000)def forward(self, x):x = self.stage1(x)x = self.stage2(x)x = self.stage3(x)x = self.avg(x)# x = self.model(x)x = x.view(-1, 1024)x = self.fc(x)return x

在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):  super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

在这里插入图片描述
在pytorch代码中,只需要一行就可以实现l2标准化的层。
在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"): super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

训练部分

在这里插入图片描述

在这里插入图片描述

http://www.yayakq.cn/news/285540/

相关文章:

  • 建筑网站大全玻璃手机网页无法访问
  • 卡板技术支持 东莞网站建设家居设计案例
  • 买完网站怎么建设国有企业查询系统
  • changer网站建设秦皇岛和平大街网站建设
  • 哪个网站做不锈钢好wordpress后台邮箱
  • html5手机网站开发视频教程网站因备案关闭
  • 网站运行方案网站建设人员的安排
  • 相亲网站如何做自我介绍海尔电子商务网站建设
  • 手机电脑同步网站开发ppt免费
  • 连云港建设局网站广州市海珠区最新官方消息
  • 网站建设 技术支持 阿里深圳工业设计大展2021
  • 网站开发的主要方法网站中常用的功能模块
  • 惠城网站设计wordpress制作插件
  • 计算机网站建设 是什么意思装修公司名字
  • 网站开发语言有php做网站网站代理怎么找客源
  • 电商网站建设规划开发方案免费建站微信
  • 成都设计电商网站自己怎么做卡密网站
  • 软件高端开发seo网站项目
  • 深圳网站开发antnw为何网站建设公司报价不同
  • 赛门仕博做网站怎么样网站开发书籍
  • 高端个人网站google网站排名
  • 有关网站建设文章整合营销策划方案
  • 婚纱摄影网站建设公司箱包网站建设策划报告
  • 网站定制哪个好企业网站维护与销售
  • 域名备案要多少钱泰安做网站优化
  • 招聘网站如何建设合肥中小企业网站制作
  • 桐乡 网站建设dedecms如何做网站
  • 淘宝网站那个做的建设网站图
  • 企业网站系统设计与实现每天能赚30 50元的捕鱼游戏
  • 公司被其它人拿来做网站江苏省电力建设一公司网站