当前位置: 首页 > news >正文

企业内部网站模板下载网站自定义模块

企业内部网站模板下载,网站自定义模块,甘肃省城乡建设局网站,wordpress内页php页面1、认识决策树 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 怎么理解这句话?通过一个对话例子 想一想这个女生为什么把年龄放在最上面判断!&a…

1、认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法

怎么理解这句话?通过一个对话例子
在这里插入图片描述
想一想这个女生为什么把年龄放在最上面判断!!!!!!!!!

2、决策树分类原理详解

为了更好理解决策树具体怎么分类的,我们通过一个问题例子?
在这里插入图片描述
问题:如何对这些客户进行分类预测?你是如何去划分?
有可能你的划分是这样的
在这里插入图片描述
那么我们怎么知道这些特征哪个更好放在最上面,那么决策树的真是划分是这样的
在这里插入图片描述

2.1 原理

  • 信息熵、信息增益等
    需要用到信息论的知识!!!问题:通过例子引入信息熵

2.2 信息熵

那来玩个猜测游戏,猜猜这32支球队那个是冠军。并且猜测错误付出代价。每猜错一次给一块钱,告诉我是否猜对了,那么我需要掏多少钱才能知道谁是冠军? (前提是:不知道任意球队的信息、历史比赛记录、实力等)
在这里插入图片描述
为了使代价最小,可以使用二分法猜测:

我可以把球编上号,从1到32,然后提问:冠 军在1-16号吗?依次询问,只需要五次,就可以知道结果。
在这里插入图片描述
我们来看这个式子:

  • 32支球队,log32=5比特
  • 64支球队,log64=6比特

在这里插入图片描述
香农指出,它的准确信息量应该是,p为每个球队获胜的概率(假设概率相等,都为1/32),我们不用钱去衡量这个代价了,香浓指出用比特:

H = -(p1logp1 + p2logp2 + … + p32log32) = - log32

2.2.1 信息熵的定义
  • H的专业术语称之为信息熵,单位为比特。
    在这里插入图片描述
    “谁是世界杯冠军”的信息量应该比5比特少,特点(重要):

  • 当这32支球队夺冠的几率相同时,对应的信息熵等于5比特

  • 只要概率发生任意变化,信息熵都比5比特大

2.2.2 总结(重要)
  • 信息和消除不确定性是相联系的
    当我们得到的额外信息(球队历史比赛情况等等)越多的话,那么我们猜测的代价越小(猜测的不确定性减小)

问题: 回到我们前面的贷款案例,怎么去划分?可以利用当得知某个特征(比如是否有房子)之后,我们能够减少的不确定性大小。越大我们可以认为这个特征很重要。那怎么去衡量减少的不确定性大小呢?

2.3 决策树的划分依据之一------信息增益

2.3.1 定义与公式

特征A训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵**H(D|A)之差,即公式为:
在这里插入图片描述
公式的详细解释:
在这里插入图片描述

注:信息增益表示得知特征X的信息而息的不确定性减少的程度使得类Y的信息熵减少的程度

2.3.2 贷款特征重要计算

在这里插入图片描述

  • 我们以年龄特征来计算:

1、g(D, 年龄) = H(D) -H(D|年龄) = 0.971-[5/15H(青年)+5/15H(中年)+5/15H(老年]

2、H(D) = -(6/15log(6/15)+9/15log(9/15))=0.971

3、H(青年) = -(3/5log(3/5) +2/5log(2/5))
H(中年)=-(3/5log(3/5) +2/5log(2/5))
H(老年)=-(4/5og(4/5)+1/5log(1/5))

我们以A1、A2、A3、A4代表年龄、有工作、有自己的房子和贷款情况。
最终计算的结果g(D, A1) = 0.313, g(D, A2) = 0.324, g(D, A3) = 0.420,g(D, A4) = 0.363。所以我们选择A3 作为划分的第一个特征。这样我们就可以一棵树慢慢建立。

2.4 决策树的三种算法实现

当然决策树的原理不止信息增益这一种,还有其他方法。但是原理都类似,我们就不去举例计算。

  • ID3
    • 信息增益 最大的准则
  • C4.5
    • 信息增益比 最大的准则
  • CART
    • 分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的默认原则
    • 优势:划分更加细致(从后面例子的树显示来理解)

2.5 决策树API

  • class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)

    • 决策树分类器
    • criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
    • max_depth:树的深度大小
    • random_state:随机数种子
  • 其中会有些超参数:max_depth:树的深度大小

    • 其它超参数我们会结合随机森林讲解
  • sklearn.tree.export_graphviz() # 该函数能够导出DOT格式,结合ycharm可以实现树结构的可视化!

    • tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])

3、鸢尾花案例代码:

from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_20newsgroups, load_iris
from sklearn.tree import DecisionTreeClassifier, export_graphviz"""用决策树对鸢尾花进行分类:return:"""
# 1)获取数据集
iris = load_iris()# 2)划分数据集
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)# 3)决策树预估器
estimator = DecisionTreeClassifier(criterion="entropy", )
estimator.fit(x_train, y_train)# 4)模型评估
# 方法1:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)# 方法2:计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)# 可视化决策树
export_graphviz(estimator, out_file="iris_tree.dot", feature_names=iris.feature_names)

在这里插入图片描述
pycharm自带的dot文件的可视化
在这里插入图片描述

4、 决策树总结

  • 优点:
    • 简单的理解和解释,树木可视化。
  • 缺点:
    • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。
  • 改进:
    • 减枝cart算法(决策树API当中已经实现,随机森林参数调优有相关介绍)
    • 随机森林

注:企业重要决策,由于决策树很好的分析能力,在决策过程应用较多, 可以选择特征

http://www.yayakq.cn/news/545951/

相关文章:

  • 企业网站可以个人备案wordpress导购淘宝客模板
  • 做销售用什么网站淮北网站三合一建设
  • 微信制作网站自己做的视频网站如何赚钱
  • 手机网站 禁止缩放最新网络推广方法
  • 做2手物品通过网站去卖掉好做吗Spring做网站和什么
  • 网站制作系统哪个好网站icp备案申请
  • 上海备案证查询网站查询网站查询系统大连百度快速优化排名
  • 南昌哪里可以做企业网站百度小说搜索风云榜排名
  • 北京企业建站程序电子商务发展趋势有哪些
  • 站群优化公司成都职业培训网络学院
  • 网站建设合理的流程网站开发费 税率
  • 凡科建站代理登录入口如何做计算机网站
  • 网站建设 seojsc招远网站建设公司报价
  • 网站开发学哪种语言小程序api文档
  • 新加坡网站制作网站名是域名吗
  • 初中做语文综合题的网站小白怎么做网站搬家教程
  • 重庆开县网站建设公司推荐wordpress可以做手机网
  • 广州微信网站设计制作秦皇岛保障性住房官网
  • 浙江个人网站备案长沙新媒体营销
  • 临沂建设局网站农民工保证金白色网站配色
  • 上海网站营销推做U启的网站
  • 网站怎样做公众号网络营销 长沙
  • 广州品牌网站设计公司服装网页设计素材
  • 郑州微网站营销网站建设实力派易网拓
  • wap网站的发展android源码下载网站
  • 找出网站所有死链接中国营销型网站
  • 网站建设业务提成小程序雀神麻将开挂视频
  • 静态网站开发的目的资阳公司网站建设
  • 营商环境建设监督局网站北京网站建
  • 锡山建设局网站如何做网络营销机构