当前位置: 首页 > news >正文

小型企业网站建设淘宝网站开发实训报告目录

小型企业网站建设,淘宝网站开发实训报告目录,天元建设集团有限公司工程,在企业网站建设的解决方案中🎯要点 🎯多模光纤包含光学系统线性和非线性部分 | 🎯单变量线性回归、多变量线性回归、人脸图像年龄预测、音频语音分类和 X 射线图像评估算法 | 🎯在空间光调制器记录海螺参数矩阵,光束算法多变量预测年龄 | &#…

🎯要点

🎯多模光纤包含光学系统线性和非线性部分 | 🎯单变量线性回归、多变量线性回归、人脸图像年龄预测、音频语音分类和 X 射线图像评估算法 | 🎯在空间光调制器记录海螺参数矩阵,光束算法多变量预测年龄 | 🎯光束算法数学模型

📜光学和散射用例

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python光泵浦

光泵浦还用于将原子或分子内束缚的电子循环泵浦至明确的量子态。对于包含单个外壳电子的原子种类的相干两能级光泵浦的最简单情况,这意味着电子被相干泵浦到单个超精细子能级(标记为 m F m_F mF ),这是由泵浦激光器以及量子选择规则。在光泵浦时,据说原子在特定的 m F m_F mF 子能级中定向,然而,由于光泵浦的循环性质,束缚电子实际上会在上能级和下能级之间经历重复的激发和衰变。泵浦激光器的频率和偏振决定了原子取向的 m F m_F mF子能级。

实际上,由于跃迁线宽的功率加宽以及超精细结构捕获和辐射捕获等不良影响,完全相干光泵浦可能不会发生。因此,原子的方向更一般地取决于激光的频率、强度、偏振和光谱带宽以及吸收跃迁的线宽和跃迁概率。

我们首先定义激光束、哈密顿量和磁场。在这里,我们感兴趣的是线偏振光下的 F = 2 → F ′ = 3 F=2 \rightarrow F^{\prime}=3 F=2F=3 跃迁。我们制作了三种激光束组合,每种组合都具有沿不同轴的线性偏振。请注意,只有在单激光束的情况下,速率方程和光学布洛赫方程才会一致。这是因为速率方程假设激光是不相干的(它们的电场不会相加得到两倍的振幅),而光学布洛赫方程则假设激光是不相干的。具体来说,两个相干光束使电场加倍,从而使强度四极,因此为了比较速率方程,我们必须乘以 4 。我们对 π y \pi_y πy π z \pi_z πz 极化执行此操作。对于 π x \pi_x πx 光束,我们将其分成两个光束。

最后,可以将失谐置于激光器上或将失谐置于哈密顿量上(或两者的某种组合)。后者似乎更快。

gamma = 1 laserBeams = {}
laserBeams['$\\pi_z$']= pyp.laserBeams([{'kvec': np.array([1., 0., 0.]), 'pol':np.array([0., 0., 1.]),'pol_coord':'cartesian', 'delta':-2.73*gamma, 's':4*0.16*(1+2.73**2)}])
laserBeams['$\\pi_y$']= pyp.laserBeams([{'kvec': np.array([0., 0., 1.]), 'pol':np.array([0., 1., 0.]),'pol_coord':'cartesian', 'delta':-2.73*gamma, 's':4*0.16*(1+2.73**2)}])
laserBeams['$\\pi_x$']= pyp.laserBeams([{'kvec': np.array([0., 0., 1.]), 'pol':np.array([1., 0., 0.]),'pol_coord':'cartesian', 'delta':-2.73*gamma, 's':0.16*(1+2.73**2)},{'kvec': np.array([0., 0., -1.]), 'pol':np.array([1., 0., 0.]),'pol_coord':'cartesian', 'delta':-2.73*gamma, 's':0.16*(1+2.73**2)}])magField = lambda R: np.zeros(R.shape)H_g, muq_g = pyp.hamiltonians.singleF(F=2, gF=1, muB=1)
H_e, mue_q = pyp.hamiltonians.singleF(F=3, gF=1, muB=1)
d_q = pyp.hamiltonians.dqij_two_bare_hyperfine(2, 3)
hamiltonian = pyp.hamiltonian()
hamiltonian.add_H_0_block('g', H_g)
hamiltonian.add_H_0_block('e', H_e-0.*np.eye(H_e.shape[0]))
hamiltonian.add_d_q_block('g', 'e', d_q, gamma=gamma)hamiltonian.print_structure()

计算密度迁移

obe = {}
rateeq = {}
rateeq['$\\pi_z$'] = pyp.rateeq(laserBeams['$\\pi_z$'], magField,hamiltonian)
obe['$\\pi_z$'] = pyp.obe(laserBeams['$\\pi_z$'], magField, hamiltonian,transform_into_re_im=transform)N0 = np.zeros((rateeq['$\\pi_z$'].hamiltonian.n,))
N0[0] = 1
rateeq['$\\pi_z$'].set_initial_pop(N0)
rateeq['$\\pi_z$'].evolve_populations([0, 600/gamma],max_step=1/gamma)rho0 = np.zeros((obe['$\\pi_z$'].hamiltonian.n**2,))
rho0[0] = 1.
obe['$\\pi_z$'].set_initial_rho(np.real(rho0))
obe['$\\pi_z$'].evolve_density(t_span=[0, 600/gamma],progress_bar=True)Neq = rateeq['$\\pi_z$'].equilibrium_populations(np.array([0., 0., 0.]),np.array([0., 0., 0.]), 0.)

绘制结果

fig, ax = plt.subplots(1, 1)
for jj in range(5):ax.plot(gamma*rateeq['$\\pi_z$'].sol.t,rateeq['$\\pi_z$'].sol.y[jj, :], '--',color='C{0:d}'.format(jj),linewidth=1.0)ax.plot(gamma*obe['$\\pi_z$'].sol.t, np.abs(obe['$\\pi_z$'].sol.rho[jj, jj]), '-',color='C{0:d}'.format(jj),linewidth=0.5)ax.plot(gamma*obe['$\\pi_z$'].sol.t[-1], Neq[jj], '.', color='C{0:d}'.format(jj),linewidth=0.5)ax.set_xlabel('$\\Gamma t$')
ax.set_ylabel('$\\rho_{ii}$');

接下来,我们要检查我们的旋转是否正常工作,因此我们将对具有 π y \pi_y πy 偏振的 z ^ \hat{z} z^ 行进光束进行相同的计算。但在我们使用光学布洛赫方程之前,我们需要首先创建初始状态,这涉及到旋转我们的状态。

mug = spherical2cart(muq_g)
S = -mugE, U = np.linalg.eig(S[1])
inds = np.argsort(E)
E = E[inds]
U = U[:, inds]
Uinv = np.linalg.inv(U)
psi = U[:, 0]rho0 = np.zeros((hamiltonian.n, hamiltonian.n), dtype='complex128')
for ii in range(hamiltonian.ns[0]):for jj in range(hamiltonian.ns[0]):rho0[ii, jj] = psi[ii]*np.conjugate(psi[jj])obe['$\\pi_y$'] = pyp.obe(laserBeams['$\\pi_y$'], magField, hamiltonian,transform_into_re_im=transform)
obe['$\\pi_y$'].set_initial_rho(rho0.reshape(hamiltonian.n**2,))
obe['$\\pi_y$'].evolve_density(t_span=[0, 600],progress_bar=True)for jj in range(obe['$\\pi_y$'].sol.t.size):obe['$\\pi_y$'].sol.rho[:5, :5, jj] = Uinv@obe['$\\pi_y$'].sol.rho[:5, :5, jj]

绘制结果

fig, ax = plt.subplots(1, 1)
for jj in range(5):ax.plot(obe['$\\pi_y$'].sol.t,np.abs(obe['$\\pi_y$'].sol.rho[jj, jj]), '-',color='C{0:d}'.format(jj),linewidth=0.5)
ax.set_xlabel('$\\Gamma t$')
ax.set_ylabel('$\\rho_{ii}$');

现在,让我们对 π x \pi_x πx 做同样的事情,只不过这次我们有两束激光束,强度为 1 / 4 1 / 4 1/4

E, U = np.linalg.eig(S[0])inds = np.argsort(E)
E = E[inds]
U = U[:, inds]
Uinv = np.linalg.inv(U)psi = U[:, 0]rho0 = np.zeros((hamiltonian.n, hamiltonian.n), dtype='complex128')
for ii in range(hamiltonian.ns[0]):for jj in range(hamiltonian.ns[0]):rho0[ii, jj] = psi[ii]*np.conjugate(psi[jj])obe['$\\pi_x$'] = pyp.obe(laserBeams['$\\pi_x$'], magField, hamiltonian,transform_into_re_im=transform)
obe['$\\pi_x$'].set_initial_rho(rho0.reshape(hamiltonian.n**2,))
obe['$\\pi_x$'].evolve_density(t_span=[0, 600],progress_bar=True)for jj in range(obe['$\\pi_x$'].sol.t.size):obe['$\\pi_x$'].sol.rho[:5, :5, jj] = Uinv@obe['$\\pi_x$'].sol.rho[:5, :5, jj]

👉参阅、更新:计算思维 | 亚图跨际

http://www.yayakq.cn/news/669328/

相关文章:

  • 网站文章更新注意什么意思北京西城注册公司
  • 备案 网站下线无锡做网站哪家公司好
  • 建站模板wordpress 编辑权限 发文章
  • 海外网站建设推广网站做政务
  • 怎样批量做全国网站宁化县建设局网站
  • 嘉兴信息网站wordpress 边栏修改
  • 买房咨询平台在线东莞快速优化排名
  • 烟台消防建设信息网站重庆网站建设公司的网站
  • 单页面网站制作前端做网站步骤
  • 河南网站推广优化排名百度查重免费
  • 百度智能云网站建设电子商务平台网站源码
  • 做网站域名是什么意思微信小程序后台
  • 酒店网站html模板免费上传图片的网址
  • 梅州市住房和城乡建设局官方网站类似视频教程网站的wordpress主题
  • 网站建设 试题网站怎么换服务器
  • 广告网站留电话东营做网站多少钱
  • iis7.5网站权限配置软件技术专升本
  • 北京企业建站哪家好山西建设厅网站2016年3号文件
  • 建设网站有什么作用wordpress网站实例
  • 网站建设海报室内设计者联盟app下载
  • 个人网站怎样备案wordpress获取文章块
  • wordpress引导页网站同时做竞价和优化可以
  • 洛阳网站建设联系方式建设网站范文
  • 做竞彩网站代理犯法么中国网络安全官网
  • 开一个做网站的工作室ext做的网站有那些
  • 河南企业网站排名优化东莞做购物网站
  • 网站建设与维护ppt模板下载微网站怎样做
  • 上饶建设银行网站济宁网站建设流程
  • 有哪些做的好的汽配零配件网站中英双语外贸网站源码
  • 中山网站备案wordpress标签链接地址