当前位置: 首页 > news >正文

河北沧州泊头做网站的电话jsp 网站开发教程

河北沧州泊头做网站的电话,jsp 网站开发教程,建设工程合同在性质上属于,网站跳出率高的原因实际问题研究中,常常遇到多变量问题,变量越多,问题往往越复杂,且各个变量之间往往有联系。于是,我们想到能不能用较少的新变量代替原本较多的旧变量,且使这些较少的新变量尽可能多地保留原来变量所反映的信…

         实际问题研究中,常常遇到多变量问题,变量越多,问题往往越复杂,且各个变量之间往往有联系。于是,我们想到能不能用较少的新变量代替原本较多的旧变量,且使这些较少的新变量尽可能多地保留原来变量所反映的信息

比如说一件上衣,有身长、袖长、胸围、腰围等等十多个指标,将型号分这么多很麻烦,因此,厂家将十多项指标综合成3项指标,分别反映长度、胖瘦、特殊体型。

 变量具有相关性,同时就意味着反映的信息有重叠性,主成分分析就是将重复的变量(关系紧密的变量)删去,建立尽可能少的、互相无关的新变量。

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析法,也是数学上用来降维的一种方法。 

通过PCA将n维原始特征映射到k维上(k<n),称这k维为主成分。

找新的维度实质上要使数据间的方差够大,即在新维度下坐标点足够分散、数据间有区分。本质上也就是在做基变换。

下图是一个例子,将5个点降维到一条直线上。

 代数上,可以理解为m × n的原始样本X,与n×k阶的矩阵W做矩阵乘法,得到m×k阶低维矩阵Y

分析思想

        假设有n个样板,p个指标,则可以构成大小为n×p的样本矩阵X:

x=\begin{bmatrix} x_{11} &x_{12} &... &x_{1p} \\ x_{21} &x_{22} & ...& x_{2p} \\ ... &... & ... & ...\\ x_{n1} &x_{n2} &... & x_{np} \end{bmatrix}=(x_1,x_2,...x_p)

假设我们想找到新的一组变量z_1,z_2,...,z_m(m\le p),其满足

\left\{\begin{matrix} z_1=l_{11}x_1+l_{12}x_2+...+l_{1p}x_p\\ z_2=l_{21}x_1+l_{22}x_2+...+l_{2p}x_p\\ ...\\ z_m=l_{m1}x_1+l_{m2}x_2+...+l_{mp}x_p \end{matrix}\right. 

系数l_{ij}确定原则:

  • z_iz_j(i\neq j;i,j=1,2,...,m) 线性无关
  • z_kx_1,x_2,...x_p线性组合中方差第k大者,称原变量指标的第k主成分

PCA计算步骤

  1. 标准化处理X_{ij}=\frac{x_{ij}-\overline{x_j}}{S_j}
  2. 计算标准化样本的协方差矩阵R=\begin{bmatrix} r_{11} &r_{12} &... &r_{1p} \\ r_{21} &r_{22} & ...& r_{2p} \\ ... &... & ... & ...\\ r_{n1} &r_{n2} &... & r_{np} \end{bmatrix}
  3. 计算R的特征值和特征向量(特征值从大到小排序)
  4. 计算主成分贡献率以及累计贡献率
  5. 贡献率\alpha_i=\frac{\lambda_i}{\sum_{k=1}^{p}\lambda_k}(i=1,2,...,p)
  6. 累计贡献率\sum G=\frac{\sum_{k-1}^{i}\lambda}{\sum_{k=1}^{p} \lambda_k }(i=1,2,...,p)
  7. 写出主成分:一般取累计贡献率超过80%的特征值所对应的第1,2,...,m个主成分。其中第 i 个是F_i=a_{1i}X_1+a_{2i}X_2+...+a_{pi}X_p(i=1,2,...,m) (a_i是第i个特征向量)
  8. 根据系数分析主成分代表的意义

 Python代码

         这段代码将Iris数据集降维到二维空间,并使用散点图展示不同类别的鸢尾花在降维后的空间中的分布情况。详见注释。

import matplotlib.pyplot as plt  # 加载matplotlib用于数据的可视化
from sklearn.decomposition import PCA  # 加载PCA算法包
from sklearn.datasets import load_iris  # 从sklearn库中导入load_iris函数,用于加载Iris数据集。data = load_iris()  # 使用load_iris函数加载Iris数据集。
y = data.target  # 提取数据集的标签(目标变量),表示不同种类的鸢尾花。
x = data.data  # 提取数据集的特征,表示鸢尾花的四个特征。
pca = PCA(n_components=2)  # 加载PCA算法,设置降维后主成分数目为2
reduced_x = pca.fit_transform(x)  # 对原始数据进行PCA降维,将数据转换为新的二维空间。
red_x, red_y = [], []
blue_x, blue_y = [], []
green_x, green_y = [], []
#  初始化三个颜色类别(红色、蓝色、绿色)的坐标列表。
for i in range(len(reduced_x)):  # 遍历降维后的数据if y[i] == 0:  # 如果数据点属于第一类鸢尾花。red_x.append(reduced_x[i][0])red_y.append(reduced_x[i][1])# 将该点在降维后的第一个主成分的坐标添加到红色类别的x坐标列表中。# 将该点在降维后的第二个主成分的坐标添加到红色类别的y坐标列表中。elif y[i] == 1:blue_x.append(reduced_x[i][0])blue_y.append(reduced_x[i][1])else:green_x.append(reduced_x[i][0])green_y.append(reduced_x[i][1])
# 可视化
plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(blue_x, blue_y, c='b', marker='D')
plt.scatter(green_x, green_y, c='g', marker='.')
plt.show()

结果

http://www.yayakq.cn/news/734331/

相关文章:

  • 济南做网站的公司有哪些wordpress 后台攻击
  • 深圳app设计网站建设微信网站域名
  • 如何查询网站空间大小苏州市工程造价信息网官网
  • 北京师范大学学风建设专题网站优化就是开除吗
  • 潍坊网站建设价格wordpress flv
  • 十堰高端网站建设洛阳搜索引擎优化
  • 该网站正在建设服务器一年多少钱
  • 郑州市金水区建设局网站服务器网站管理系统
  • 上海住房与建设部网站网站制作公司网址
  • 网站设计制作程序优秀行业网站
  • 提供网站设计方案公司物流公司怎么做
  • 一流的高密网站建设c2c跨境电商平台有哪几个
  • 如何做网站的内链和外链网站建设有哪些软件
  • 如何为公司做网站为什么网站建设
  • 全国最新网站备案查询螃蟹网络游戏账号交易平台
  • 南通企业建站程序微信开放平台与个人网站怎么
  • 专业制作网站是什么广东网站开发
  • 医院建设网站要求分析 amp办公室内网怎么搭建局域网
  • 网站建设 会议纪要wordpress4.0.6 漏洞
  • 从事网站建设的职业北京西站附近景点
  • 泰安有口碑的企业建站公司招聘网站开发费用
  • 百度官网地址合肥优化推广公司
  • 百度网站收录提交入口全攻略金华企业网站建站模板
  • jfinal怎么做网站会计培训班一般多少钱
  • 陕西省建设监理协会网站证书朋友圈网站广告怎么做
  • 做网站公示红色 网站
  • 万网网站备案授权书怎么做网页赚钱
  • 网站建设中英文表述亚马逊欧洲站
  • 哪里网站建设好可以做网站的编程有什么
  • 天猫优惠券网站怎么做的广州seo诊断