当前位置: 首页 > news >正文

网页设计制作网站首页微信网站搭建价格

网页设计制作网站首页,微信网站搭建价格,建设银行江门市新会网站,南京百度推广网站自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计 在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS&…

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE)是几种常见的参数估计方法。这篇博客将详细介绍这些方法及其均方误差(MSE)的计算,并通过Python代码实现这些方法。

1. 最小二乘估计 (LSE)

公式与推导

给定一个线性模型:
y = X β + ϵ y = X\beta + \epsilon y=+ϵ
其中:

  • y y y 是观测向量,
  • X X X 是设计矩阵,
  • β \beta β 是待估计的参数向量,
  • ϵ \epsilon ϵ是误差向量,假设其服从正态分布,均值为零,协方差矩阵为 σ 2 I \sigma^2 I σ2I

最小二乘估计是通过最小化残差平方和来估计参数 β \beta β
β ^ LSE = ( X T X ) − 1 X T y \hat{\beta}_{\text{LSE}} = (X^T X)^{-1} X^T y β^LSE=(XTX)1XTy

均方误差 (MSE)

均方误差定义为:
MSE = E [ ( β − β ^ ) T ( β − β ^ ) ] \text{MSE} = \mathbb{E}\left[ (\beta - \hat{\beta})^T (\beta - \hat{\beta}) \right] MSE=E[(ββ^)T(ββ^)]

对于最小二乘估计,均方误差为:
MSE LSE = σ 2 tr ( ( X T X ) − 1 ) \text{MSE}_{\text{LSE}} = \sigma^2 \text{tr}\left( (X^T X)^{-1} \right) MSELSE=σ2tr((XTX)1)

2. 加权最小二乘估计 (WLS)

公式与推导

当观测值有不同的方差时,使用加权最小二乘估计。假设误差向量 ϵ \epsilon ϵ 的协方差矩阵为 Σ \Sigma Σ,加权最小二乘估计为:
β ^ WLS = ( X T Σ − 1 X ) − 1 X T Σ − 1 y \hat{\beta}_{\text{WLS}} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} y β^WLS=(XTΣ1X)1XTΣ1y

均方误差 (MSE)

加权最小二乘估计的均方误差为:
MSE WLS = σ 2 tr ( ( X T Σ − 1 X ) − 1 ) \text{MSE}_{\text{WLS}} = \sigma^2 \text{tr}\left( (X^T \Sigma^{-1} X)^{-1} \right) MSEWLS=σ2tr((XTΣ1X)1)

3. 线性最小方差估计 (LMMSE)

公式与推导

线性最小方差估计考虑了观测误差和先验信息。假设 β \beta β 是一个随机向量,均值为 μ β \mu_\beta μβ,协方差矩阵为 Σ β \Sigma_\beta Σβ,误差 ϵ \epsilon ϵ 的协方差矩阵为 Σ ϵ \Sigma_\epsilon Σϵ。LMMSE的公式为:
β ^ LMMSE = Σ β X T ( X Σ β X T + Σ ϵ ) − 1 y \hat{\beta}_{\text{LMMSE}} = \Sigma_\beta X^T (X \Sigma_\beta X^T + \Sigma_\epsilon)^{-1} y β^LMMSE=ΣβXT(XΣβXT+Σϵ)1y

均方误差 (MSE)

LMMSE的均方误差为:
MSE LMMSE = Σ β − Σ β X T ( X Σ β X T + Σ ϵ ) − 1 X Σ β \text{MSE}_{\text{LMMSE}} = \Sigma_\beta - \Sigma_\beta X^T (X \Sigma_\beta X^T + \Sigma_\epsilon)^{-1} X \Sigma_\beta MSELMMSE=ΣβΣβXT(XΣβXT+Σϵ)1XΣβ

示例代码

下面的Python代码展示了如何计算LSE、WLS和LMMSE以及相应的均方误差。

import numpy as np
import matplotlib.pyplot as pltdef compute_LSE(X, y):# 最小二乘估计beta_hat_LSE = np.linalg.inv(X.T @ X) @ X.T @ yreturn beta_hat_LSEdef compute_WLS(X, y, Sigma):# 加权最小二乘估计Sigma_inv = np.linalg.inv(Sigma)beta_hat_WLS = np.linalg.inv(X.T @ Sigma_inv @ X) @ X.T @ Sigma_inv @ yreturn beta_hat_WLSdef compute_LMMSE(X, y, mu_beta, Sigma_beta, Sigma_epsilon):# 线性最小方差估计Sigma_beta_XT = Sigma_beta @ X.Tinv_term = np.linalg.inv(X @ Sigma_beta_XT + Sigma_epsilon)beta_hat_LMMSE = mu_beta + Sigma_beta_XT @ inv_term @ (y - X @ mu_beta)return beta_hat_LMMSEdef compute_MSE_LSE(X, sigma):# LSE的均方误差MSE_LSE = sigma ** 2 * np.trace(np.linalg.inv(X.T @ X))return MSE_LSEdef compute_MSE_WLS(X, Sigma, sigma):# WLS的均方误差Sigma_inv = np.linalg.inv(Sigma)MSE_WLS = sigma ** 2 * np.trace(np.linalg.inv(X.T @ Sigma_inv @ X))return MSE_WLSdef compute_MSE_LMMSE(X, Sigma_beta, Sigma_epsilon):# LMMSE的均方误差term = Sigma_beta @ X.T @ np.linalg.inv(X @ Sigma_beta @ X.T + Sigma_epsilon)MSE_LMMSE = np.trace(Sigma_beta - term @ X @ Sigma_beta)return MSE_LMMSE# 示例数据
np.random.seed(0)
n = 100
p = 5
X = np.random.randn(n, p)
beta_true = np.random.randn(p)
y = X @ beta_true + np.random.randn(n)# 计算LSE
beta_hat_LSE = compute_LSE(X, y)
print("LSE:", beta_hat_LSE)# 计算WLS
Sigma = np.diag(np.random.rand(n))  # 假设误差的协方差矩阵为对角矩阵
beta_hat_WLS = compute_WLS(X, y, Sigma)
print("WLS:", beta_hat_WLS)# 计算LMMSE
mu_beta = np.zeros(p)
Sigma_beta = np.eye(p)
Sigma_epsilon = np.eye(n)
beta_hat_LMMSE = compute_LMMSE(X, y, mu_beta, Sigma_beta, Sigma_epsilon)
print("LMMSE:", beta_hat_LMMSE)# 计算均方误差
sigma = 1
MSE_LSE = compute_MSE_LSE(X, sigma)
MSE_WLS = compute_MSE_WLS(X, Sigma, sigma)
MSE_LMMSE = compute_MSE_LMMSE(X, Sigma_beta, Sigma_epsilon)
print("MSE_LSE:", MSE_LSE)
print("MSE_WLS:", MSE_WLS)
print("MSE_LMMSE:", MSE_LMMSE)

代码说明

  1. compute_LSE: 计算最小二乘估计(LSE)。
  2. compute_WLS: 计算加权最小二乘估计(WLS)。
  3. compute_LMMSE: 计算线性最小方差估计(LMMSE)。
  4. compute_MSE_LSE: 计算LSE的均方误差(MSE)。
  5. compute_MSE_WLS: 计算WLS的均方误差(MSE)。
  6. compute_MSE_LMMSE: 计算LMMSE的均方误差(MSE)。

在这里插入图片描述
在这里插入图片描述

运行上述代码,可以得到最小二乘估计、加权最小二乘估计和线性最小方差估计的结果以及相应的均方误差:

LSE: [ 0.00203471  0.21309766  1.05822246 -0.56680025  1.45839468]
WLS: [ 0.0597175   0.15308323  1.07124848 -0.59091883  1.47423845]
LMMSE: [-0.13400144  0.04498152  0.8584689  -0.71304874  1.25876277]
MSE_LSE: 5.008474
MSE_WLS: 0.13285989867054735
MSE_LMMSE: 1.2825935217514267

结论

在实际应用中,选择合适的估计方法和准确地整定其参数是确保估计质量的关键。本文通过Python代码展示了如何计算最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE),并计算了相应的均方误差(MSE)。这些方法各有优缺点,选择合适的方法取决于具体的应用场景和数据特性。

LSE适用于误差均方同分布的情况,而WLS适用于误差方差不同的情况。LMMSE则结合了观测误差和先验信息,在有先验信息的情况下表现较好。通过正确选择和使用这些方法,可以有效地提高参数估计的精度和可靠性。

希望这篇博客能够帮助您理解和应用最小二乘估计、加权最小二乘估计和线性最小方差估计。如果有任何问题或建议,欢迎在评论区留言讨论。

http://www.yayakq.cn/news/246160/

相关文章:

  • 网站建设的文本事例深圳营销网站建设联系方式
  • 如何设置网站logo怎么做网页小游戏
  • soho在哪里做网站手机网站图片轮播
  • 网站开发风险分析注册城乡规划师哪个网校好
  • 腾讯adq广告平台找人做seo要给网站程序
  • 网站建设dw实训总结wordpress 登陆网址
  • 济宁广告公司网站建设温州网页制作设计
  • 开网店做代理的公司网站企业网站建设费用详情
  • 怎样做理财投资网站wordpress 精品主题
  • 网站改版总结福建建筑人才服务中心
  • 建设网站 xp网站内容建设出现的问题
  • 河北建设厅网站设置WordPress不支持大数据
  • 做网站自己能做百度推广吗专业ppt制作公司
  • 手机百度 网站提交做营销推广外包的网站
  • 凡科做公司网站怎么收费免费的网站模板哪里有
  • 新注册公司网站免费怎么做学校网站建设行业现状
  • 宁波网站建设优化企业推荐wordpress 引流
  • 新网站关键词怎么优化wamp搭建多个网站
  • flask 简易网站开发推广计划书
  • 网站服务器配置参考指南英才网
  • 网站绑定两个域名怎么做跳转新手如何开微商城店
  • 国外有哪些网站是做弱电的成都网站设计
  • 海南手机网站建设公司坪山网站建设
  • 怎么查网站备案接入商网站建设和推广方案
  • 提供网站建设哪家好wordpress 漂浮窗口
  • 如何做公司培训网站1元1年xyz域名
  • seo站长产品设计公司介绍
  • 多少钱要交税做优化网站哪个公司好
  • 公司网站可以免费建吗市场营销做得好的企业
  • 专业的外贸建站公司陕西网络推广网站