当前位置: 首页 > news >正文

网站建设云浪科技图书销售网站建设

网站建设云浪科技,图书销售网站建设,网站开发主要技术,最近在线观看免费播放电视剧文章目录 前言一、Bert的vocab.txt内容查看二、BERT模型转换方法(vocab.txt)三、vocab内容与模型转换对比四、中文编码总结 前言 最近一直在学习多模态大模型相关内容,特别是图像CV与语言LLM模型融合方法,如llama-1.5、blip、meta-transformer、glm等大…

文章目录

  • 前言
  • 一、Bert的vocab.txt内容查看
  • 二、BERT模型转换方法(vocab.txt)
  • 三、vocab内容与模型转换对比
  • 四、中文编码
  • 总结

前言

最近一直在学习多模态大模型相关内容,特别是图像CV与语言LLM模型融合方法,如llama-1.5、blip、meta-transformer、glm等大模型。其语言模型的中文和英文句子如何编码成计算机识别符号,使我困惑。我查阅资料,也发现很少有博客全面说明。为此,我以该博客记录其整过过程,并附有对应代码供读者参考。

处理语言模型需要将英文或中文等字符表示成模型能识别的符号,为此不同模型会按照某些方法表示,但不同模型转计算机能识别思路是一致的。

一、Bert的vocab.txt内容查看

来源tokenization.py文件内容。

PRETRAINED_VOCAB_ARCHIVE_MAP = {'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}

vocab.txt内容:
在这里插入图片描述
上图是我截取vocab.txt的内容,基本很多有的符号/数字/运算符/中文/字母/单词等均在该txt文件夹中。

二、BERT模型转换方法(vocab.txt)

加入有2句话,分别为text01与text02(如下),他们会转换vocab.txt中已有的单词形式。其中需要留意:’##符号连接长单词在vocab.txt部件方式,如embeddings表示为['em','##bed','##ding','s']。同时,vocab.txt不存在单词部件会化成最小组件,单个字母(vocab.txt最小部件是字母)。
代码如下:

from pytorch_pretrained_bert import BertTokenizertokenizer = BertTokenizer.from_pretrained('../voccab.txt')text01 = "Here is the sentence I want embeddings for."
text02 = "wish for world peace."
marked_text = "[CLS] " + text01 + " [SEP] " + text02 + " [SEP]"
print('marked_text = ', marked_text)tokenized_text = tokenizer.tokenize(marked_text)
print('tokenized_text = ', tokenized_text)indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)for tup in zip(tokenized_text, indexed_tokens):print("tup = ", tup)

marked_text是将句子使用符号分开表示其句子含义;
tokenized_text表示将句子化成vocab.txt文件提供的部件,其中##bed有单独表示;
tup = (‘[CLS]’, 101)后的内容表示其符号对应的索引。
其结果如下:

marked_text =  [CLS] Here is the sentence I want embeddings for. [SEP] wish for world peace. [SEP]
tokenized_text =  ['[CLS]', 'here', 'is', 'the', 'sentence', 'i', 'want', 'em', '##bed', '##ding', '##s', 'for', '.', '[SEP]', 'wish', 'for', 'world', 'peace', '.', '[SEP]']tup =  ('[CLS]', 101)
tup =  ('here', 2182)
tup =  ('is', 2003)
tup =  ('the', 1996)
tup =  ('sentence', 6251)
tup =  ('i', 1045)
tup =  ('want', 2215)
tup =  ('em', 7861)
tup =  ('##bed', 8270)
tup =  ('##ding', 4667)
tup =  ('##s', 2015)
tup =  ('for', 2005)
tup =  ('.', 1012)
tup =  ('[SEP]', 102)
tup =  ('wish', 4299)
tup =  ('for', 2005)
tup =  ('world', 2088)
tup =  ('peace', 3521)
tup =  ('.', 1012)
tup =  ('[SEP]', 102)

总结:最终词汇等内容转为对应的索引数字表达。

三、vocab内容与模型转换对比

从图中可知,vocab的索引值总比模型给出索引值小1,这是因为模型从0开始索引,而vocab展示内容从1开始,因此相差1。
在这里插入图片描述
再次强调:模型对词汇编码实际为人为给出对应表(如:vocab.txt)所对应的索引,用索引值替换词语。

四、中文编码

以上内容已全部告知读者,模型如何编码句子。而该部分内容是拓展,使用中文编码,查看其结果。
代码如下:

from pytorch_pretrained_bert import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('../voccab.txt')
text01 = "the sentence I want embeddings for."
text02 = "愿世界和平。"
marked_text = "[CLS] " + text01 + " [SEP] " + text02 + " [SEP]"
print('marked_text = ', marked_text)
tokenized_text = tokenizer.tokenize(marked_text)
print('tokenized_text = ', tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
for tup in zip(tokenized_text, indexed_tokens):print("tup = ", tup)

结果如下:

marked_text =  [CLS] the sentence I want embeddings for. [SEP] 愿世界和平。 [SEP]
tokenized_text =  ['[CLS]', 'the', 'sentence', 'i', 'want', 'em', '##bed', '##ding', '##s', 'for', '.', '[SEP]', '[UNK]', '世', '[UNK]', '和', '平', '。', '[SEP]']
tup =  ('[CLS]', 101)
tup =  ('the', 1996)
tup =  ('sentence', 6251)
tup =  ('i', 1045)
tup =  ('want', 2215)
tup =  ('em', 7861)
tup =  ('##bed', 8270)
tup =  ('##ding', 4667)
tup =  ('##s', 2015)
tup =  ('for', 2005)
tup =  ('.', 1012)
tup =  ('[SEP]', 102)
tup =  ('[UNK]', 100)
tup =  ('世', 1745)
tup =  ('[UNK]', 100)
tup =  ('和', 1796)
tup =  ('平', 1839)
tup =  ('。', 1636)
tup =  ('[SEP]', 102)

图显示:
在这里插入图片描述
可发现,和上面英文句子编码是一样的。

总结

一句话,模型是根据提供对应表,将中/英文句子或符号编译成对应索引,被计算识别。

http://www.yayakq.cn/news/567304/

相关文章:

  • 网站海报是怎么做的网站百度地图生成器
  • 怎样用云服务器做网站环球资源网入驻费用
  • 做直播网站赚钱工程装修
  • 网站维护学习有没有做西餐的视频网站
  • 网站前端设计培训义乌做网站zisou8
  • 没有网站怎么做seohtml静态网站怎么放在网站上
  • 做内容网站资源库网站建设
  • 帝国cms这么做网站开个网站做代理
  • 做手机网站的好处网站前台登陆页面怎么改
  • 企业没有做网站有的坏处外包小程序开发的价格
  • 温江区建设局网站微网站的定义
  • 上海公司网站建设以子为什么不要做外包员工
  • wordpress免费建站吗摄影剪辑培训班
  • 创建网站是怎么赚钱的黑龙江开放网站备案
  • 网站301检测工具一万元小型办厂设备
  • 网站建设和技术服务合同范本上传设计作品集的网站
  • 石家庄网站制作系统织梦网站地图
  • 汇中建设 官方网站网站用后台更换图片
  • 北京平台网站建设费用网页设计首页制作
  • dedecms农业种植网站模板app的技术框架有哪些
  • 怎么让百度搜到网站做软件需要什么软件
  • 郑州建立一个网站需要哪些her123 wordpress
  • 怎么查网站点击量海南网站建设案例
  • 合肥网站建设首选众龙建站快车加盟
  • 网站界面用什么软件做科技公司 网站设计经典案例
  • 加盟类网站建设网站建设云技术公司推荐
  • 选择赣州网站建设百度官网首页登陆
  • 昆山做网站的个人长沙最好玩的地方排名
  • mysql 视频网站开发系统炸了我成了系统
  • 阿里云域名续费网站自己做的网站打开太慢