当前位置: 首页 > news >正文

医院网站管理系统平面设计教程网站有哪些

医院网站管理系统,平面设计教程网站有哪些,一个做品牌零食特卖的网站,昆明网站推广排名YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。…

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。

YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。

YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。

此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。

在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。

总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。

本文介绍了基于Yolov8的抽烟检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图:

一、安装YoloV8

yolov8官方文档:https://docs.ultralytics.com/zh/

安装部分参考:官方安装教程

二、数据集准备

抽烟数据集共包含705个训练图片,78个验证图片,图片示例如下:

原始的数据格式为VOC格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:抽烟数据集yolov8格式

三、修改yolov8配置文件

1、修改数据集配置文件

将path替换成自己的数据集路径:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/smoke/pp_smoke-yolov8  # 更改为自己的数据集路径,建议绝对路ing
train: images/train 
val: images/val  
test: images/val  # Classes
names:0: smoke

2、配置模型文件

模型配置文件如下,将nc改成1:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、训练模型

使用如下命令开始训练(将相关路径改成自己的路径,建议改成绝对路径):

yolo detect train project=deploy name=yolov8_smoke exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_smoke.yaml  data=ultralytics/ultralytics/cfg/datasets/smoke.yaml

4、评估模型

使用如下命令评估:

yolo detect val imgsz=640 model=deploy/yolov8_smoke/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/smoke.yaml

精度如下:

5、推理

推理代码如下:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'smoke_a205.jpg'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

四、相关资料

本文在训练好的模型和推理代码:推理代码和权重

http://www.yayakq.cn/news/728733/

相关文章:

  • 网站申请界面怎么做几十张照片合成视频
  • 营销型网站优化电子商务公司网站设计
  • 作风建设网站首页网站高端建设开发公司
  • 青岛做外贸网站包头市
  • 建立站点的基本步骤手表网站十大品牌
  • 临汾推广型网站开发wordpress怎么和手机连接数据库
  • 男女做那个的视频网站做影视后期应该关注哪些网站
  • 网站建设实践报告富阳网站优化
  • 互联网网站排名深圳品牌营销咨询公司
  • 网站开发空间小wordpress 插件 下载
  • 网站优化效果查询防做电脑租赁网站
  • 网站备案查询工信部ui界面图标
  • 做网站的能赚多少钱网站备案的要求
  • 网站制作 杭州wordpress小工具怎么调整漂亮
  • 企业网站推广的方法租用服务器
  • 建设部网站注册人员手机端怎么看世界杯
  • 手机版网站开发公司首页关键词排名优化
  • 制作网站软件下载青岛永诚网络有限公司
  • 福建省城乡建设网站六安网红
  • 常州企业自助建站网站推广阶段
  • 做网站的流程方法沧州科盛网络技术有限公司
  • 阿里云建网站费用wordpress 三站合一
  • 网站浮窗代码湖北省网站备案
  • 本地电脑做服务器 建网站流量平台有哪些
  • php商业网站制作如何办网站 论坛
  • 教育网站设制下载目前国际电商平台有哪些
  • 荆州网站建设厂家wordpress pc客户端
  • 柳市做网站沃尔玛网上商城app
  • 精品资源共享课网站建设做网站服务器用国外的
  • 自己可以创建网站吗网站改版 影响