当前位置: 首页 > news >正文

做课内教学网站手机兼职软件推荐app

做课内教学网站,手机兼职软件推荐app,优秀个人网页设计案例分析,国内外建筑设计网站机器学习和深度学习已越来越多应用在时序预测中。ARIMA 或指数平滑等经典预测方法正在被 XGBoost、高斯过程或深度学习等机器学习回归算法所取代。 尽管时序模型越来越复杂,但人们对时序模型的性能表示怀疑。有研究表明,复杂的时序模型并不一定会比时序…

机器学习和深度学习已越来越多应用在时序预测中。ARIMA 或指数平滑等经典预测方法正在被 XGBoost、高斯过程或深度学习等机器学习回归算法所取代。

尽管时序模型越来越复杂,但人们对时序模型的性能表示怀疑。有研究表明,复杂的时序模型并不一定会比时序分解模型有效(Makridakis, 2018)。

为什么时序预测很难?

时间序列是按时间排序的值,但时序预测具有很大的挑战性。从模型难度和精度角度考虑,时序模型的比常规的回归和分类任务更难。

原因1:序列是非平稳的

平稳性是时间序列的核心概念,如果时间序列的趋势(例如平均水平)不随时间变化,则该时间序列是平稳的。许多现有方法都假设时间序列是平稳的,但是趋势或季节性会打破平稳性。

原因2:依赖外部数据

除了时间因素之外,时间序列通常还有额外的依赖性。时空数据是一个常见的例子,每个观察值都在两个维度上相关,因此数据具有自身的滞后(时间依赖性)和附近位置的滞后(空间依赖性)。

原因3:噪音和缺失值

现实世界受到噪音和缺失值的困扰,设备故障可能会产生噪音和缺失值。传感器故障导致数据丢失,或者存在干扰,都会带来数据噪音。

原因4:样本量有限

时间序列往往都只包含少量的观察值,可能没有足够的数据来构建足够的模型。数据采集的频率影响了样本量,同时也会遇到数据冷启动问题。

技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

好的技术文章离不开粉丝的分享、推荐,资料干货、资料分享、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:pythoner666,备注:来自CSDN
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

样本量与模型精度

时序模型往往无法进行完美预测,这可能和时序数据的样本量相关。在使用较大的训练集时,具有大模型往往比参数较少的模型表现更好。在时序序列长度小于1000时,深度模型往往并不会比时序分类模型更好。

下面对比了模型精度与样本个数的关系,这里尝试了五种经典方法(ARIMA、ETS、TBATS、Theta 和 Naive)和五种机器学习方法(高斯过程、M5、LASSO、随机森林和 MARS)。预测任务是来预测时间序列的下一个值。

结果如下图所示,轴表示训练样本大小,即用于拟合预测模型的数据量。轴表示所有时间序列中每个模型的平均误差,使用交叉验证计算得出。

当只有少数观测值可用时,基础方法表现出更好的性能。然而,随着样本量的增加,机器学习方法优于经典方法。

进一步可以得出以下结论:

  • 机器学习方法拥有很强的预测能力,前提是它们具有足够大的训练数据集;

  • 当只有少量观测值可用时,推荐首选 ARIMA 或指数平滑等经典方法;

  • 可以将指数平滑等经典方法与机器学习相结合可以提高预测准确性。

时序多步预测

大多数预测问题都被定义为单步预测,根据最近发生的事件预测系列的下一个值。时间序列多步预测需要预测未来多个值, 提前预测许多步骤具有重要的实际优势,多步预测减少了长期的不确定性。 但模型试图预测更远的未来时,模型的误差也会逐渐增加。

方法1:递归预测

多步预测最简单的方法是递归形式,训练单个模型进行单步预测,然后将模型与其先前的预测结果作为输入得到后续的输出。

from sklearn.linear_model import LinearRegression  
# using a linear regression for simplicity. any regression will do.  
recursive = LinearRegression()  
# training it to predict the next value of the series (t+1)  
recursive.fit(X_tr, Y_tr['t+1'])  
# setting up the prediction data structure  
predictions = pd.DataFrame(np.zeros(Y_ts.shape), columns=Y_ts.columns)  # making predictions for t+1  
yh = recursive.predict(X_ts)  
predictions['t+1'] = yh  # iterating the model with its own predictions for multi-step forecasting  
X_ts_aux = X_ts.copy()  
for i in range(2, Y_tr.shape[1] + 1):  X_ts_aux.iloc[:, :-1] = X_ts_aux.iloc[:, 1:].values  X_ts_aux['t-0'] = yh  yh = recursive.predict(X_ts_aux)  predictions[f't+{i}'] = yh  

上述代码逻辑在sktime中也可以找到相应的实现:https://www.sktime.org/en/stable/api_reference/auto_generated/sktime.forecasting.compose.RecursiveTimeSeriesRegressionForecaster.html

递归方法只需要一个模型即可完成整个预测范围,且无需事先确定预测范围。

但此种方法用自己的预测作为输入,这导致误差逐渐累计,对长期预测的预测性能较差。

方法2:多目标回归

多目标回归为每一个预测结果构建一个模型,如下是一个使用案例:

from sklearn.multioutput import MultiOutputRegressor  direct = MultiOutputRegressor(LinearRegression())  
direct.fit(X_tr, Y_tr)  
direct.predict(X_ts)  

scikit-learn的MultiOutputRegressor为每个目标变量复制了一个学习算法。在这种情况下,预测方法是LinearRegression

此种方法避免了递归方式中错误传播,但多目标预测需要更多的计算资源。此外多目标预测假设每个点是独立的,这是违背了时序数据的特点。

方法3:递归多目标回归

递归多目标回归结合了多目标和递归的思想。为每个点建立一个模型。但是在每一步的输入数据都会随着前一个模型的预测而增加。

from sklearn.multioutput import RegressorChain  dirrec = RegressorChain(LinearRegression())  
dirrec.fit(X_tr, Y_tr)  
dirrec.predict(X_ts)  

这种方法在机器学习文献中被称为chaining。scikit-learn 通过 RegressorChain 类为其提供了一个实现。

参考文献

Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. “Statistical and Machine Learning forecasting methods: Concerns and ways forward.” PloS one 13.3 (2018): e0194889.

http://www.yayakq.cn/news/783479/

相关文章:

  • 沙漠风网站建设公司苏州网站建设网站开发
  • 手机网站大全排行网站关键词怎么优化到首页
  • 合肥网站seo优化排名公司长沙房地产网站设计
  • 平凉有做企业网站的吗重庆机有哪些网站建设公司
  • 网站宣传推广方案旅游网站项目计划书
  • 企业门户网站开发任务书网站开发线上销售技巧
  • 新乡市网站建设有哪些公司seo网站诊断价格
  • 做网站手机青岛制作
  • 人力资源网站建设秦皇岛黄页大全秦皇岛本地信息网
  • 自学软件网站开发企业备案做电影网站的后果
  • 做网站为什么不要源代码东莞设计网站推荐
  • 比较有设计感的网站怎么做代刷网站长
  • 山东联通网站备案企业网络推广的简介
  • 适合vue做的网站类型企业网站模板图片
  • 网站开发成appwordpress如何配置opcache
  • 金山做网站网站 手机版 电脑版 怎么做
  • 传世网站建设绿化公司和苗圃做网站
  • 浙江省建设厅地址在哪里山东seo网络营销推广
  • 网站建设的教材网站建设合同交什么印花税
  • 即刻搜索收录网站学校网站的建设目标是什么意思
  • 站牛网做网站的镜像是什么意思
  • 品牌网站运营wordpress xml生成
  • 做平面设计必知的网站渭南韩城
  • 泰安肥城建设局网站守游网络游戏推广平台
  • 服务器网站建设实训报告八戒网设计官网
  • 诸暨市建设局行业管理网站用ps做网站切片
  • 网站的专区怎么建设WordPress 整合源码
  • 女生做网站编辑怎么样细胞医疗 网站模版
  • 随州做网站生意怎么样赤峰公司做网站
  • 建设网站涉及哪些问题下载了wordpress进不了网页