当前位置: 首页 > news >正文

自己做公司的网站免费xyz域名注册

自己做公司的网站,免费xyz域名注册,wordpress 不显示图片,电子元器件外贸平台背景 BGE embedding系列模型是由智源研究院研发的中文版文本表示模型。 可将任意文本映射为低维稠密向量,以用于检索、分类、聚类或语义匹配等任务,并可支持为大模型调用外部知识。 BAAI/BGE embedding系列模型 模型列表 ModelLanguageDescriptionq…

背景

BGE embedding系列模型是由智源研究院研发的中文版文本表示模型。

可将任意文本映射为低维稠密向量,以用于检索、分类、聚类或语义匹配等任务,并可支持为大模型调用外部知识。

BAAI/BGE embedding系列模型

模型列表

ModelLanguageDescriptionquery instruction for retrieval [1]
BAAI/bge-m3Multilingual推理 微调多功能(向量检索,稀疏检索,多表征检索)、多语言、多粒度(最大长度8192)
LM-CocktailEnglish微调的Llama和BGE模型,可以用来复现LM-Cocktail论文的结果
BAAI/llm-embedderEnglish推理 微调专为大语言模型各种检索增强任务设计的向量模型详见 README
BAAI/bge-reranker-largeChinese and English推理 微调交叉编码器模型,精度比向量模型更高但推理效率较低 [2]
BAAI/bge-reranker-baseChinese and English推理 微调交叉编码器模型,精度比向量模型更高但推理效率较低 [2]
BAAI/bge-large-en-v1.5English推理 微调1.5版本,相似度分布更加合理Represent this sentence for searching relevant passages:
BAAI/bge-base-en-v1.5English推理 微调1.5版本,相似度分布更加合理Represent this sentence for searching relevant passages:
BAAI/bge-small-en-v1.5English推理 微调1.5版本,相似度分布更加合理Represent this sentence for searching relevant passages:
BAAI/bge-large-zh-v1.5Chinese推理 微调1.5版本,相似度分布更加合理为这个句子生成表示以用于检索相关文章:
BAAI/bge-base-zh-v1.5Chinese推理 微调1.5版本,相似度分布更加合理为这个句子生成表示以用于检索相关文章:
BAAI/bge-small-zh-v1.5Chinese推理 微调1.5版本,相似度分布更加合理为这个句子生成表示以用于检索相关文章:
BAAI/bge-large-enEnglish推理 微调向量模型,将文本转换为向量Represent this sentence for searching relevant passages:
BAAI/bge-base-enEnglish推理 微调base-scale 向量模型Represent this sentence for searching relevant passages:
BAAI/bge-small-enEnglish推理 微调small-scale 向量模型Represent this sentence for searching relevant passages:
BAAI/bge-large-zhChinese推理 微调向量模型,将文本转换为向量为这个句子生成表示以用于检索相关文章:
BAAI/bge-base-zhChinese推理 微调base-scale 向量模型为这个句子生成表示以用于检索相关文章:
BAAI/bge-small-zhChinese推理 微调small-scale 向量模型为这个句子生成表示以用于检索相关文章:

C_MTEB榜单:Embedding

目前看榜单的话BAAI/bge-large-zh-v1.5是居于榜首的。(这里仅就刷榜而言)

ModelEmbedding dimensionAvgRetrievalSTSPairClassificationClassificationRerankingClustering
BAAI/bge-large-zh-v1.5102464.5370.4656.2581.669.1365.8448.99
BAAI/bge-base-zh-v1.576863.1369.4953.7279.7568.0765.3947.53
BAAI/bge-small-zh-v1.551257.8261.7749.1170.4163.9660.9244.18
BAAI/bge-large-zh102464.2071.5354.9878.9468.3265.1148.39
BAAI/bge-large-zh-noinstruct102463.5370.555376.7768.5864.9150.01
BAAI/bge-base-zh76862.9669.5354.1277.567.0764.9147.63
multilingual-e5-large102458.7963.6648.4469.8967.3456.0048.23
BAAI/bge-small-zh51258.2763.0749.4570.3563.6461.4845.09
m3e-base76857.1056.9150.4763.9967.5259.3447.68
m3e-large102457.0554.7550.4264.368.259.6648.88
multilingual-e5-base76855.4861.6346.4967.0765.3554.3540.68
multilingual-e5-small38455.3859.9545.2766.4565.8553.8645.26
text-embedding-ada-002(OpenAI)153653.0252.043.3569.5664.3154.2845.68
luotuo102449.3744.442.7866.626149.2544.39
text2vec-base76847.6338.7943.4167.4162.1949.4537.66
text2vec-large102447.3641.9444.9770.8660.6649.1630.02

bge-large-zh-v1.5

发布bge-*-v1.5向量模型,缓解相似度分布问题,提升无指令情况下的检索能力(但检索任务仍建议使用指令)

使用示例:

from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T

使用示例2:

在上篇文章LLM大语言模型(七):部署ChatGLM3-6B并提供HTTP server能力_failed to parse tool call, maybe the response is n-CSDN博客

中部署ChatGLM3-6B并提供HTTP server能力时,也是显示的用了 bge-large-zh-v1.5 embedding,可以让用户测试输入对应的embedding。(LLM实际使用的是tokenizer,默认包含了分词和embedding等)

@app.post("/v1/embeddings", response_model=EmbeddingResponse)
async def get_embeddings(request: EmbeddingRequest):embeddings = [embedding_model.encode(text) for text in request.input]embeddings = [embedding.tolist() for embedding in embeddings]

 参考

  1. LLM大语言模型(七):部署ChatGLM3-6B并提供HTTP server能力
  2. LLM大语言模型(四):在ChatGLM3-6B中使用langchain_chatglm3-6b langchain-CSDN博客
  3. LLM大语言模型(一):ChatGLM3-6B本地部署-CSDN博客

 

http://www.yayakq.cn/news/352422/

相关文章:

  • 电商网站大全wordpress旧文章更新
  • 网站建设如何商谈贵州专业网站建设
  • 网页制作免费网站企业官网模板图下载
  • 泰国房产网站大全汨罗网站建设
  • 长沙点梦网站建设邯郸做移动网站找谁
  • 惠州网站建设领头羊seo超级外链工具
  • 搜索 贵州省住房和城乡建设厅网站外贸如何网络推广
  • 网做英文网站正常做网站多少钱
  • 建筑设计自学网站公司网站建设制作价格
  • 长沙市建设网站平台的公司前端开发主要做什么
  • 做的比较好看的国内网站北京到太原
  • 重庆短视频培训seo81
  • php除了写网站吗node wordpress
  • 江苏瀚和建设网站外贸业务流程图
  • 做网站每一年都要交钱吗青岛开发区人才网
  • 做淘宝客的的网站有什么要求今天的新闻热点
  • 网站建设先进个人总结如何创建一个论坛网站
  • 文章类网站模板南充网站建设略奥
  • 网站职能证券官网首页
  • 织梦能做视频网站吗专业个人网站
  • 深圳网站建设前十名山东新增5个高风险地区
  • 网站推广广告公司什么网站做问卷好
  • 网站开发能赚钱吗页面设计属于什么专业
  • ict网站建设软件开发各阶段产生的文档
  • wordpress统一网站图片大小个人做搜索引擎网站违法吗
  • 建立网站的软件下载辽宁建设工程信息网查询截图
  • 广州seo招聘信息合肥seo搜索优化
  • 如何建设网站山东济南兴田德润官网有哪个网站教人做美食
  • 小说网站建设目的wordpress微信链接地址
  • 网站地图什么格式网站报404错误怎么解决