当前位置: 首页 > news >正文

360房产网徐州seo培训

360房产网,徐州seo培训,网站建设网络推广图片,wordpress还原文章目录 深度学习Week16——数据增强 一、前言 二、我的环境 三、前期工作 1、配置环境 2、导入数据 2.1 加载数据 2.2 配置数据集 2.3 数据可视化 四、数据增强 五、增强方式 1、将其嵌入model中 2、在Dataset数据集中进行数据增强 六、训练模型 七、自定义增强函数 一、前言…

文章目录
深度学习Week16——数据增强
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
2.1 加载数据
2.2 配置数据集
2.3 数据可视化
四、数据增强
五、增强方式
1、将其嵌入model中
2、在Dataset数据集中进行数据增强
六、训练模型
七、自定义增强函数

一、前言

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

本篇内容分为两个部分,前面部分是学习K同学给的算法知识点以及复现,后半部分是自己的拓展与未解决的问题

本期学习了数据增强函数并自己实现一个增强函数,使用的数据集仍然是猫狗数据集。

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.0
  • 编译器:Pycharm2023.2.3
    深度学习环境:TensorFlow
    显卡及显存:RTX 3060 8G

三、前期工作

1、配置环境

import matplotlib.pyplot as plt
import numpy as np
#隐藏警告
import warnings
warnings.filterwarnings('ignore')from tensorflow.keras import layers
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")# 打印显卡信息,确认GPU可用
print(gpus)

输出:

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境(如果有gpu的话)

2、 导入数据

导入所有猫狗图片数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),数据集来源于K同学啊

2.1 加载数据
data_dir   = "/home/mw/input/dogcat3675/365-7-data"
img_height = 224
img_width  = 224
batch_size = 32train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.3,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset
tf.keras.preprocessing.image_dataset_from_directory()会将文件夹中的数据加载到tf.data.Dataset中,且加载的同时会打乱数据。

  • class_names
  • validation_split: 0和1之间的可选浮点数,可保留一部分数据用于验证。
  • subset: training或validation之一。仅在设置validation_split时使用。
  • seed: 用于shuffle和转换的可选随机种子。
  • batch_size: 数据批次的大小。默认值:32
  • image_size: 从磁盘读取数据后将其重新调整大小。默认:(256,256)。由于管道处理的图像批次必须具有相同的大小,因此该参数必须提供。

输出:

Found 3400 files belonging to 2 classes.
Using 2380 files for training.

由于原始的数据集里不包含测试集,所以我们需要自己创建一个

val_batches = tf.data.experimental.cardinality(val_ds)
test_ds     = val_ds.take(val_batches // 5)
val_ds      = val_ds.skip(val_batches // 5)print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
Number of validation batches: 60
Number of test batches: 15

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

[‘cat’, ‘dog’]

2.2 配置数据集
AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
2.3 数据可视化
plt.figure(figsize=(15, 10))  # 图形的宽为15高为10for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(5, 8, i + 1) plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

四 、数据增强

使用下面两个函数来进行数据增强:

  • tf.keras.layers.experimental.preprocessing.RandomFlip:水平和垂直随机翻转每个图像。
  • tf.keras.layers.experimental.preprocessing.RandomRotation:随机旋转每个图像
data_augmentation = tf.keras.Sequential([tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),tf.keras.layers.experimental.preprocessing.RandomRotation(0.3),
])

第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照0.3的弧度值进行随机旋转。

# Add the image to a batch.
image = tf.expand_dims(images[i], 0)plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = data_augmentation(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0])plt.axis("off")

五、增强方式

1. 将其嵌入model中

model = tf.keras.Sequential([data_augmentation,layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(len(class_names))
])

Epoch 1/20
43/43 [==============================] - 18s 103ms/step - loss: 1.2824 - accuracy: 0.5495 - val_loss: 0.4272 - val_accuracy: 0.8941
Epoch 2/20
43/43 [==============================] - 3s 55ms/step - loss: 0.3326 - accuracy: 0.8815 - val_loss: 0.1882 - val_accuracy: 0.9309
Epoch 3/20
43/43 [==============================] - 3s 54ms/step - loss: 0.1614 - accuracy: 0.9488 - val_loss: 0.1493 - val_accuracy: 0.9412
Epoch 4/20
43/43 [==============================] - 2s 54ms/step - loss: 0.1215 - accuracy: 0.9557 - val_loss: 0.0950 - val_accuracy: 0.9721
Epoch 5/20
43/43 [==============================] - 3s 54ms/step - loss: 0.0906 - accuracy: 0.9666 - val_loss: 0.0791 - val_accuracy: 0.9691
Epoch 6/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0614 - accuracy: 0.9768 - val_loss: 0.1131 - val_accuracy: 0.9559
Epoch 7/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0603 - accuracy: 0.9807 - val_loss: 0.0692 - val_accuracy: 0.9794
Epoch 8/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0577 - accuracy: 0.9793 - val_loss: 0.0609 - val_accuracy: 0.9779
Epoch 9/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0511 - accuracy: 0.9825 - val_loss: 0.0546 - val_accuracy: 0.9779
Epoch 10/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0462 - accuracy: 0.9871 - val_loss: 0.0628 - val_accuracy: 0.9765
Epoch 11/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0327 - accuracy: 0.9895 - val_loss: 0.0790 - val_accuracy: 0.9721
Epoch 12/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0242 - accuracy: 0.9938 - val_loss: 0.0580 - val_accuracy: 0.9794
Epoch 13/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0354 - accuracy: 0.9907 - val_loss: 0.0797 - val_accuracy: 0.9735
Epoch 14/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0276 - accuracy: 0.9900 - val_loss: 0.0810 - val_accuracy: 0.9691
Epoch 15/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0243 - accuracy: 0.9931 - val_loss: 0.1063 - val_accuracy: 0.9676
Epoch 16/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0253 - accuracy: 0.9914 - val_loss: 0.1142 - val_accuracy: 0.9721
Epoch 17/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0205 - accuracy: 0.9937 - val_loss: 0.0726 - val_accuracy: 0.9706
Epoch 18/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0154 - accuracy: 0.9948 - val_loss: 0.0741 - val_accuracy: 0.9765
Epoch 19/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0155 - accuracy: 0.9966 - val_loss: 0.0870 - val_accuracy: 0.9721
Epoch 20/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0259 - accuracy: 0.9907 - val_loss: 0.1194 - val_accuracy: 0.9721

这样做的好处是:
数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作。

2. 在Dataset数据集中进行数据增强

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNEdef prepare(ds):ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)return ds
model = tf.keras.Sequential([layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(len(class_names))
])
Epoch 1/20
75/75 [==============================] - 11s 133ms/step - loss: 0.8828 - accuracy: 0.7113 - val_loss: 0.1488 - val_accuracy: 0.9447
Epoch 2/20
75/75 [==============================] - 2s 33ms/step - loss: 0.1796 - accuracy: 0.9317 - val_loss: 0.0969 - val_accuracy: 0.9658
Epoch 3/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0999 - accuracy: 0.9655 - val_loss: 0.0362 - val_accuracy: 0.9879
Epoch 4/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0566 - accuracy: 0.9810 - val_loss: 0.0448 - val_accuracy: 0.9853
Epoch 5/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0426 - accuracy: 0.9807 - val_loss: 0.0142 - val_accuracy: 0.9937
Epoch 6/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0149 - accuracy: 0.9944 - val_loss: 0.0052 - val_accuracy: 0.9989
Epoch 7/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0068 - accuracy: 0.9974 - val_loss: 7.9693e-04 - val_accuracy: 1.0000
Epoch 8/20
75/75 [==============================] - 2s 33ms/step - loss: 0.0015 - accuracy: 1.0000 - val_loss: 4.8532e-04 - val_accuracy: 1.0000
Epoch 9/20
75/75 [==============================] - 2s 33ms/step - loss: 4.5804e-04 - accuracy: 1.0000 - val_loss: 1.9160e-04 - val_accuracy: 1.0000
Epoch 10/20
75/75 [==============================] - 2s 33ms/step - loss: 1.7624e-04 - accuracy: 1.0000 - val_loss: 1.1390e-04 - val_accuracy: 1.0000
Epoch 11/20
75/75 [==============================] - 2s 33ms/step - loss: 1.1646e-04 - accuracy: 1.0000 - val_loss: 8.7005e-05 - val_accuracy: 1.0000
Epoch 12/20
75/75 [==============================] - 2s 33ms/step - loss: 9.0645e-05 - accuracy: 1.0000 - val_loss: 7.1111e-05 - val_accuracy: 1.0000
Epoch 13/20
75/75 [==============================] - 2s 33ms/step - loss: 7.4695e-05 - accuracy: 1.0000 - val_loss: 5.9888e-05 - val_accuracy: 1.0000
Epoch 14/20
75/75 [==============================] - 2s 33ms/step - loss: 6.3227e-05 - accuracy: 1.0000 - val_loss: 5.1448e-05 - val_accuracy: 1.0000
Epoch 15/20
75/75 [==============================] - 2s 33ms/step - loss: 5.4484e-05 - accuracy: 1.0000 - val_loss: 4.4721e-05 - val_accuracy: 1.0000
Epoch 16/20
75/75 [==============================] - 2s 33ms/step - loss: 4.7525e-05 - accuracy: 1.0000 - val_loss: 3.9201e-05 - val_accuracy: 1.0000
Epoch 17/20
75/75 [==============================] - 2s 33ms/step - loss: 4.1816e-05 - accuracy: 1.0000 - val_loss: 3.4528e-05 - val_accuracy: 1.0000
Epoch 18/20
75/75 [==============================] - 2s 33ms/step - loss: 3.7006e-05 - accuracy: 1.0000 - val_loss: 3.0541e-05 - val_accuracy: 1.0000
Epoch 19/20
75/75 [==============================] - 2s 33ms/step - loss: 3.2878e-05 - accuracy: 1.0000 - val_loss: 2.7116e-05 - val_accuracy: 1.0000
Epoch 20/20
75/75 [==============================] - 2s 33ms/step - loss: 2.9274e-05 - accuracy: 1.0000 - val_loss: 2.4160e-05 - val_accuracy: 1.0000

六、训练模型

model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])epochs=20
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)

使用方法一:

15/15 [==============================] - 1s 58ms/step - loss: 0.0984 - accuracy: 0.9646
Accuracy 0.9645833373069763

使用方法二:


15/15 [==============================] - 1s 58ms/step - loss: 2.7453e-05 - accuracy: 1.0000
Accuracy 1.0

七、自定义增强函数

import random
def aug_img(image):seed = random.randint(0, 10000)  # 随机种子# 随机亮度image = tf.image.stateless_random_brightness(image, max_delta=0.2, seed=[seed, 0])# 随机对比度image = tf.image.stateless_random_contrast(image, lower=0.8, upper=1.2, seed=[seed, 1])# 随机饱和度image = tf.image.stateless_random_saturation(image, lower=0.8, upper=1.2, seed=[seed, 2])# 随机色调image = tf.image.stateless_random_hue(image, max_delta=0.2, seed=[seed, 3])# 随机翻转水平和垂直image = tf.image.stateless_random_flip_left_right(image, seed=[seed, 4])image = tf.image.stateless_random_flip_up_down(image, seed=[seed, 5])# 随机旋转image = tf.image.rot90(image, k=random.randint(0, 3))  # 旋转0, 90, 180, 270度return image
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())
Min and max pixel values: 2.4591687 241.47968
plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = aug_img(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0].numpy().astype("uint8"))plt.axis("off")

在这里插入图片描述
然后我们使用了第二种增强方法,以下为他的结果:

15/15 [==============================] - 1s 57ms/step - loss: 0.1294 - accuracy: 0.9604
Accuracy 0.9604166746139526

在这里插入图片描述

http://www.yayakq.cn/news/323760/

相关文章:

  • 谈谈网站开发流程自适应导航网站模板
  • 网站设计基本要素aspcms企业网站模板
  • 各大高校的校园网站建设留言网站模板
  • 北京工程建设协会网站泉州企业网站制作定制
  • 手机网站建设万网营销推广方案案例
  • 商业空间设计案例ppt模板新网站如何做网站优化
  • 洛阳网络建站公司宝塔怎么做两个网站
  • 网站建设百度推广房产网站代理
  • 如何建设网站咨询跳转页面装修报价单明细表
  • 北京免费发布企业信息网站点击图片是网站怎么做的
  • 重庆专业网站推广报价一台云服务器做多个网站
  • 设计素材网站酷p网页微博注销
  • 网站布局结构图wordpress手机发文章
  • 怎么提高网站排名甘肃金恒大建设有限公司网站
  • 家在宝安seo的中文是什么
  • 打电话给客户怎样介绍自己是做网站的?开场白?织梦wap模板自适应手机网站dedecms模板下载
  • 图书类网站开发的背景房地产网站建设
  • 建设一个大型网站大概费用wordpress博客内容设计
  • 大朗做网站wordpress APP canwp
  • 怎么做网站一个平台百度明星人气榜排名
  • 做网站必须要加v吗网站建设工作策划书
  • 网站开发技术留言wordpress数据库无法连接
  • 企业网站托管外包怎么做莱州网站建设价格
  • 网上书店电子商务网站建设上海网站推广策划
  • 沧浪企业建设网站方法网上开店能赚钱吗
  • 设计之家下载正规seo服务商
  • 网站建设公司哪家好 该如何选择网站建设需要注意那些点
  • 网站主机在哪里注册呢企业官方网站如何做蓝v认证
  • 手机app与网站链接最新军事新闻头条重大
  • 做景观要用的植物网站搭建网站需要注意什么