当前位置: 首页 > news >正文

新手做网站优化怎么做做驾校题目用什么网站好

新手做网站优化怎么做,做驾校题目用什么网站好,深圳网站建设一般多少钱,网站建设内页线程互斥 线程互斥: 任何时刻,保证只有一个执行流进入临界区访问临界资源,通常对临界资源起到保护作用 相关概念 临界资源: 一次仅允许一个进程使用的共享资源临界区: 每个线程内部,访问临界资源的代码&am…

线程互斥

线程互斥:
任何时刻,保证只有一个执行流进入临界区访问临界资源,通常对临界资源起到保护作用

相关概念

  • 临界资源: 一次仅允许一个进程使用的共享资源
  • 临界区: 每个线程内部,访问临界资源的代码,就叫做临界区
  • 原子性: 不会被任何调度机制打断的操作,该操作只有两态(无中间态,即使被打断,也不会受影响),要么完成,要么未完成

互斥量mutex

概念:
多个线程对一个共享变量进行操控时,会引发数据不一致的问题。此时就引入了互斥量(也叫互斥锁)的概念,来保证共享数据操作的完整性。在被加锁的任一时刻,临界区的代码只能被一个线程访问。

为了更好的阐述这个概念,这里用一个抢票代码去演示

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <string>
#include <unistd.h>
#include <cassert>
#include <pthread.h>
int ticket=1000;
void* getTicket(void* args)
{long id=(long) args;while(1){if(ticket>0){usleep(1000);--ticket;printf("thread %ld get a ticket,the number is %d\n",id,ticket);}else{break;}}
}
int main()
{//创建五个线程pthread_t t1[5];for(int i=0;i<5;++i){pthread_create(&t1[i],nullptr,getTicket,(void*)i);}//主线程在阻塞等待for(int i=0;i<5;++i){pthread_join(t1[i],nullptr);}return 0;
}

运行结果如下:

在这里插入图片描述

我们发现票到负数了还会继续执行

原因如下:

  • if 语句判断条件为真以后,代码可以并发的切换到其他线程
  • usleep 这个过程中,ticket还没有进行--的操作有很多线程会进入if条件
  • –-ticket 操作本身就不是一个原子操作ticket有三条汇编指令(如下):
movl  ticket(%rip), %eax     # 把ticket的值(内存)加载到eax寄存器中                                                                                                     
subl  $1, %eax               # 把eax寄存器中的值减1
movl  %eax, ticket(%rip)     # 把eax寄存器中的值赋给ticket变量

有可能在你执行到第二条汇编的时候,还没来得及拷贝给内存,就别切换走了,就会导致减到负数,因为别的线程在读取的时候内存中的ticket还是1

如何解决上述问题?

  • 代码必须要有互斥行为:当代码进入临界区执行时,不允许其他线程进入该临界区。
  • 如果多个线程同时要求执行临界区的代码,并且临界区没有线程在执行,那么只能允许一个线程进入该临界区。
  • 如果线程不在临界区中执行,那么该线程不能阻止其他线程进入临界区。

在这里插入图片描述

在临界区内,线程只能串行执行,在临界区外,线程可以并发执行

互斥量的接口

互斥量其实就是一把锁,是一个类型为pthread_mutex_t的变量,使用前需要进行初始化操作,使用完之后需要对锁资源进行释放

初始化互斥量:

全局锁或静态锁:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER

局部锁:

int pthread_mutex_init(pthread_mutex_t *restrict mutex, 
const pthread_mutexattr_t *restrict attr);

参数:
restrict mutex:要初始化的锁
restrict attr:不关心,置空
返回值:
成功返回0,失败返回错误码
注意:
互斥量处于未锁状态,该函数会将互斥量锁定,同时返回成功
函数调用时,其他线程已经锁定互斥量,或者存在其他线程同时申请互斥量,但没有竞争到互斥量,那么pthread_ lock调用会陷入阻塞(执行流被挂起),等待互斥量解锁再去竞争锁

加锁:

int pthread_mutex_lock(pthread_mutex_t *mutex);

参数:
mutex:要加的锁
返回值:
成功返回0,失败返回错误码

解锁:

int pthread_mutex_unlock(pthread_mutex_t *mutex);

参数:

mutex:要解的锁

返回值:
成功返回0,失败返回错误码

销毁互斥量:

int pthread_mutex_destroy(pthread_mutex_t *mutex);

参数:
mutex:要销毁锁
返回值:
成功返回0,失败返回错误码

注意:

  • 不要销毁一个已经加锁的互斥量
  • 已经销毁的互斥量,要确保后面不会有线程再尝试加锁
  • 加锁的粒度要够小

用以上的方法再需要的地方进行加锁

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <string>
#include <unistd.h>
#include <cassert>
#include <pthread.h>
using namespace std;
int ticket=1000;
class ThreadData
{
public:ThreadData(const string& threadname,pthread_mutex_t* mutex):thread_name(threadname),mutex_p(mutex){}string thread_name;pthread_mutex_t* mutex_p;
};
//创建并初始化
//全局的锁这样写可以不用初始化和销毁
// pthread_mutex_t mutex=PTHREAD_ MUTEX_ INITIALIZER;
void* getTicket(void* args)
{ThreadData *td = static_cast<ThreadData *>(args);// ThreadData* td=(ThreadData*) args;while(1){//加锁pthread_mutex_lock(td->mutex_p);if(ticket>0){usleep(1000);cout << td->thread_name << " tickets is " << ticket << endl;--ticket;//解锁pthread_mutex_unlock(td->mutex_p);}else{//解锁pthread_mutex_unlock(td->mutex_p);break;}//抢完票就完了吗?需要形成订单给用户//这里如果不休息,会一直是第4个线程在跑,原因是锁只规定互斥访问,没有规定必须让谁优先执行//锁就是真是的让多个执行流进行竞争的结果usleep(1000);}
}int main()
{//创建五个线程pthread_t t1[5];pthread_mutex_t lock;pthread_mutex_init(&lock,nullptr);for(int i=0;i<5;++i){char buffer[64];snprintf(buffer,sizeof(buffer),"%s""%d","thread ",i+1);//锁用同一把ThreadData* td=new ThreadData(buffer,&lock);pthread_create(&t1[i],nullptr,getTicket,td);}for(int i=0;i<5;++i){pthread_join(t1[i],nullptr);}pthread_mutex_destroy(&lock);return 0;
}

运行结果如下:

在这里插入图片描述

这里运行会变慢,因为加锁以后是串行执行!

如何看待锁?

锁本身就是一个共享资源,全局变量是要被保护的,锁用来保护全局资源,锁本身也是全局资源,所以加锁的过程必须是安全的!加锁的过程是**原子的,锁如果申请成功,继续向后执行,**如果暂时没有申请成功,执行流会阻塞

如果锁申请成功,进入临界资源,正在访问临界资源,其他线程正在做什么?

阻塞等待

如果锁申请成功,进入临界资源,正在访问临界资源,我可以被切换吗?

可以,当持有线程的锁被切走,其他线程依旧无法申请锁成功,也无法向后执行,直到我释放这个锁

互斥量的原理

大多数体系结构都提供了swap或exchange指令,该指令的作用是把寄存器和内存单元的数据相交换,由于只有一条指令,保证了原子性

下面是lock和unlock的伪代码

lock:movb $0, %a1     # 把0值放进寄存器a1里xchgb %a1, mutex # 交换a1寄存器的内容和锁的值(无线程使用锁时,metux的值为1if (%a1 > 0)return 0; # 得到锁else挂起等待;goto lock;
unlock:movb $1 mutex  #把1赋给锁	唤醒等待的线程;return 0;

下图展示了如何实现:

在这里插入图片描述

解锁的伪代码步骤(只有有锁的线程才可以执行到这段代码):

  1. 把mutex的值改为1
  2. 唤醒等待锁的线程

封装锁

Mutex.hpp

#pragma once#include <iostream>
#include <pthread.h>class Mutex
{
public:Mutex(pthread_mutex_t *lock_p = nullptr): lock_p_(lock_p){}void lock(){if(lock_p_) pthread_mutex_lock(lock_p_);}void unlock(){if(lock_p_) pthread_mutex_unlock(lock_p_);}~Mutex(){}
private:pthread_mutex_t *lock_p_;
};class LockGuard
{
public:LockGuard(pthread_mutex_t *mutex): mutex_(mutex){mutex_.lock(); //在构造函数中进行加锁}~LockGuard(){mutex_.unlock(); //在析构函数中进行解锁}
private:Mutex mutex_;
};

test.cpp

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <string>
#include <unistd.h>
#include <pthread.h>
#include <memory>
#include <cassert>#include "Mutex.hpp"// 共享资源, 火车票
int tickets = 10000;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
void *getTicket(void *args)
{long long username = (long long)args;while (true){{//出了作用域会销毁LockGuard lockguard(&lock); // RAII风格的加锁!if (tickets > 0){usleep(1254); std::cout << username << " 正在进行抢票: " << tickets << std::endl;tickets--;}else{break;}}usleep(1000); }return nullptr;
}
int main()
{#define NUM 4pthread_t t1[5];for(int i=0;i<5;++i){pthread_create(&t1[i],nullptr,getTicket,(void*)i);}//主线程保持运行for(int i=0;i<5;++i){pthread_join(t1[i],nullptr);}return 0;
}

线程安全和可重入

概念

线程安全: 多个线程并发同一段代码时,不会出现不同的结果。常见对全局变量或者静态变量进行操作,并且没有锁保护的情况下,会出现该问题。
重入: 同一个函数被不同的执行流调用,当前一个流程还没有执行完,就有其他的执行流再次进入,我们称之为重入。一个函数在重入的情况下,运行结果不会出现任何不同或者任何问题,则该函数被称为可重入函数,否则,是不可重入函数。

常见的线程安全的情况

  • 每个线程对全局变量或者静态变量只有读取的权限,而没有写入的权限,一般来说这些线程是安全的
  • 类或者接口对于线程来说都是原子操作
  • 多个线程之间的切换不会导致该接口的执行结果存在二义性

常见的线程不安全的情况

  • 不保护共享变量的函数
  • 函数状态随着被调用,状态发生变化的函数
  • 返回指向静态变量指针的函数
  • 调用线程不安全函数的函数

常见可重入的情况

  • 不使用全局变量或静态变量
  • 不使用用malloc或者new开辟出的空间
  • 不调用不可重入函数
  • 不返回静态或全局数据,所有数据都有函数的调用者提供
  • 使用本地数据,或者通过制作全局数据的本地拷贝来保护全局数据

常见不可重入的情况

  • 调用了malloc/free函数,因为malloc函数是用全局链表来管理堆的
  • 调用了标准I/O库函数,标准I/O库的很多实现都以不可重入的方式使用全局数据结构
  • 可重入函数体内使用了静态的数据结构

区别与联系

区别:

  • 函数是可重入的,那就是线程安全的
  • 函数是不可重入的,那就不能由多个线程使用,有可能引发线程安全问题
  • 如果一个函数中有全局变量,那么这个函数既不是线程安全也不是可重入的

联系:

  • 可重入函数是线程安全函数的一种
  • 线程安全不一定是可重入的(不一定发生线程安全问题),而可重入函数则一定是线程安全的。
  • 如果将对临界资源的访问加上锁,则这个函数是线程安全的,但如果这个重入函数若锁还未释放则会产生死锁,因此是不可重入的。

死锁

概念

死锁是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。

死锁产生的四个必要条件:

  • 互斥条件:一个资源每次只能被一个执行流使用
  • 请求与保持条件:一个执行流因请求资源而阻塞时,对已获得的资源保持不放
  • 不剥夺条件:一个执行流已获得的资源,在未使用完之前,不能强行剥夺
  • 循环等待条件:若干执行流之间形成一种头尾相接的循环等待资源的关系

所谓的必要条件是都要满足才能形成死锁,只要有一个不满足就不是死锁

避免死锁

  • 破坏死锁的四个条件(上面分别对应的是:1.不使用锁 2.让一个执行流放开资源 3. 让一个个执行流剥夺一个执行流的资源 4. 调整申请资源的顺序)
  • 假设顺序要一致
  • 避免锁未释放的场景
  • 资源一次性分配

避免死锁算法:

  • 银行家算法:为了防止银行家资金无法周转而倒闭,对每一笔贷款,必须考察其是否能限期归还。在操作系统中研究资源分配策略时也有类似问题,系统中有限的资源要供多个进程使用,必须保证得到的资源的进程能在有限的时间内归还资源,以供其他进程使用资源。
  • 死锁检测法
http://www.yayakq.cn/news/530233/

相关文章:

  • 时尚大气网站设计学技术的培训机构
  • 怎么制作网站软件下载人才网站怎么建设
  • asp.net做网站的流程263企业邮箱登录登录入口电脑版
  • 庆阳做网站公司08影院 WordPress模板
  • 哪个网站域名更新快教育网站开发
  • 电影网站建设策划书2023全国企业公司大黄页
  • 做外贸如何建立网站网站的主题是什么
  • 学校定制网站建设公司山西建设执业资格注册管理中心网站
  • 公明做网站科技网站建设方案
  • 做网站是百度包年快照扬中网站建设公司
  • gif图标网站电商公司名字大全
  • 网站到期怎么续费网站打开是建设中
  • 太平洋建设 网站中信云 做网站
  • 车身做网站宣传图深圳制作外贸网站
  • 网站如何被收录情况平面设计网上培训机构
  • 做网站维护学什么编程语言尚易企业邮箱登录入口
  • 长沙做网站最好的公司有哪些坪山网站建设价位
  • 网站开发岗位内容和要求建设通好用吗
  • wordpress显示注册用户重庆seo研究中心
  • 校园官方网站建设的书籍wordpress 不显示图片
  • 做网站在线建设网站需要哪些设备
  • 网站建站无锡手机端网站建设的注意事项
  • 温州网页建站模板做汉字网站的外国人
  • 企业营销网站建设做网站的公司怎么拓展业务
  • 鄞州区建网站外包深圳宝安是什么风险等级
  • 视频网站设计论文商场设计任务书
  • sns社交网站什么是论坛推广
  • 甘肃省第九建设集团网站首页templatepath wordpress
  • 苏州网站建设搜王道下拉厂房网
  • 房管局备案查询网站荣欣建设集团有限公司网站