当前位置: 首页 > news >正文

做的网站怎样适配手机屏幕东莞新闻头条新闻

做的网站怎样适配手机屏幕,东莞新闻头条新闻,西安网站seo厂家,网站专业是学什么1、创建信号 1)创建正余弦信号、噪声信号和混合信号 原始正余弦信号公式:Signal1 sin(2*pi*20* t) sin(2*pi*40* t) sin(2*pi*60* t) 高斯分布的白噪声:NoiseGauss [randn(1,2000)] 均匀分布的白噪声:[rand(1,2000)] 正余弦…

1、创建信号

1)创建正余弦信号、噪声信号和混合信号

原始正余弦信号公式:Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t)

高斯分布的白噪声:NoiseGauss= [randn(1,2000)]

均匀分布的白噪声:[rand(1,2000)]

正余弦信号、噪声信号和混合信号代码:

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
subplot(5,1,1);
plot(Signal1);
title('正余弦信号');
subplot(5,1,2);
plot(NoiseGauss);
title('高斯噪声');
subplot(5,1,3);
plot(NoiseWhite);
title('白噪声');
subplot(5,1,4);
plot(NoiseSignal1);
title('混合高斯噪声信号');
subplot(5,1,5);
plot(NoiseSignal2);
title('混合白噪声信号');

试图效果:

2)创建方波信号、噪声及混合信号

原始方波信号公式:

Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),]

高斯分布的白噪声:NoiseGauss= [randn(1,2000)]

均匀分布的白噪声:[rand(1,2000)]

方波信号、噪声及混合信号代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
subplot(5,1,1);
plot(Signal2);
title('方波信号');
subplot(5,1,2);
plot(NoiseGauss);
title('高斯噪声');
subplot(5,1,3);
plot(NoiseWhite);
title('白噪声');
subplot(5,1,4);
plot(NSignal1);
title('方波混合高斯噪声信号');
subplot(5,1,5);
plot(NSignal2);
title('方波混合白噪声信号');

试图效果:

2、均值滤波filter()函数

语法:y = filter(b,a,x) 使用由分子和分母系数 b 和 a 定义的有理传递函数 对输入数据 x 进行滤波。

1)正余弦混合噪声信号均值滤波

代码:

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
b=[1 1 1 1 1 1]/6;
Signal_Filter1 = filter(b,1,NoiseSignal1);
Signal_Filter2 = filter(b,1,NoiseSignal2);
figure(1);
subplot(3,2,1);               
plot(Signal1);
title('原始信号1');
subplot(3,2,3);               
plot(NoiseSignal1);
title('高斯混合信号1');
subplot(3,2,5);  
plot(Signal_Filter1);
title('均值滤波后高斯混合信号1');
subplot(3,2,2);               
plot(Signal1);
title('原始信号1');
subplot(3,2,4);               
plot(NoiseSignal2);
title('白噪声混合信号1');
subplot(3,2,6);  
plot(Signal_Filter2);
title('均值滤波后白噪声混合信号1');

 视图效果:竖直方向三幅图进行对比

 2)方波混合噪声信号均值滤波

 代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
b=[1 1 1 1 1 1]/6;
Signal_Filter3 = filter(b,1,NSignal1);
Signal_Filter4 = filter(b,1,NSignal2);
figure(2);
subplot(3,2,1);               
plot(Signal2);
title('原始信号2');
subplot(3,2,3);               
plot(NSignal1);
title('高斯混合信号2');
subplot(3,2,5);  
plot(Signal_Filter3);
title('均值滤波后高斯混合信号2');
subplot(3,2,2);               
plot(Signal2);
title('原始信号2');
subplot(3,2,4);               
plot(NSignal2);
title('白噪声混合信号2');
subplot(3,2,6);  
plot(Signal_Filter4);
title('均值滤波后白噪声混合信号2');

视图效果:

 3、中值滤波:medfilt1()函数

语法:medfilt1(x,n)对x应用一个n阶一维中值滤波器


1)正余弦混合噪声信号中值滤波

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
Signal_Filter1=medfilt1(NoiseSignal1,11);
Signal_Filter2=medfilt1(NoiseSignal2,11);
figure(1);
subplot(3,2,1);               
plot(Signal1);
title('原始信号1');
subplot(3,2,3);               
plot(NoiseSignal1);
title('高斯混合信号1');
subplot(3,2,5);  
plot(Signal_Filter1);
title('中值滤波后高斯混合信号1');
subplot(3,2,2);               
plot(Signal1);
title('原始信号1');
subplot(3,2,4);               
plot(NoiseSignal2);
title('白噪声混合信号1');
subplot(3,2,6);  
plot(Signal_Filter2);
title('中值滤波后白噪声混合信号1');

视图效果

2)方波混合噪声信号中值滤波 

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
Signal_Filter3=medfilt1(NSignal1,11);
Signal_Filter4=medfilt1(NSignal2,11);
figure(2);
subplot(3,2,1);               
plot(Signal2);
title('原始信号2');
subplot(3,2,3);               
plot(NSignal1);
title('高斯混合信号2');
subplot(3,2,5);  
plot(Signal_Filter3);
title('中值滤波后高斯混合信号2');
subplot(3,2,2);               
plot(Signal2);
title('原始信号2');
subplot(3,2,4);               
plot(NSignal2);
title('白噪声混合信号2');
subplot(3,2,6);  
plot(Signal_Filter4);
title('中值滤波后白噪声混合信号2');

视图效果

4、 Butterworth低通滤波:巴特沃斯滤波butter()函数

语法:[b,a] = butter(n,Wn) 返回归一化截止频率为 Wn 的 n 阶低通数字巴特沃斯滤波器的传递函数系数。

1)正余弦混合噪声信号Butterworth低通滤波
代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
Wc=2*250/Fs;%截止频率 50Hz
[b,a]=butter(4,Wc);%Butterworth滤波
Signal_Filter1=filter(b,a,NoiseSignal1);
Signal_Filter2=filter(b,a,NoiseSignal2);
figure(1);
subplot(3,2,1);               
plot(Signal1);
title('原始信号1');
subplot(3,2,3);               
plot(NoiseSignal1);
title('高斯混合信号1');
subplot(3,2,5);  
plot(Signal_Filter1);
title('巴特沃斯低通滤波后高斯混合信号1');
subplot(3,2,2);               
plot(Signal1);
title('原始信号1');
subplot(3,2,4);               
plot(NoiseSignal2);
title('白噪声混合信号1');
subplot(3,2,6);  
plot(Signal_Filter2);
title('巴特沃斯低通滤波后白噪声混合信号1');

视图效果

 2)方波混合噪声信号Butterworth低通滤波

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
Wc=2*250/Fs;%截止频率 50Hz
[b,a]=butter(4,Wc);%Butterworth滤波
Signal_Filter3=filter(b,a,NSignal1);
Signal_Filter4=filter(b,a,NSignal2);
figure(2);
subplot(3,2,1);               
plot(Signal2);
title('原始信号2');
subplot(3,2,3);               
plot(NSignal1);
title('高斯混合信号2');
subplot(3,2,5);  
plot(Signal_Filter3);
title('巴特沃斯低通滤波后高斯混合信号2');
subplot(3,2,2);               
plot(Signal2);
title('原始信号2');
subplot(3,2,4);               
plot(NSignal2);
title('白噪声混合信号2');
subplot(3,2,6);  
plot(Signal_Filter4);
title('巴特沃斯低通滤波后白噪声混合信号2');

视图效果

4、线性相位FIR滤波:firls()函数

语法:firls(n,f,a):返回包含n阶FIR滤波器的n+1个系数的行向量b。所得滤波器的频率和幅度特性与向量f和a给出的特性相匹配。

 1)正余弦混合噪声信号线性相位FIR滤波

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
Signal1= sin(2*pi*20* t) + sin(2*pi*40* t) + sin(2*pi*60* t);
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
NoiseSignal1= Signal1+NoiseGauss; %设计混合信号1
NoiseSignal2= Signal1+NoiseWhite; %设计混合信号2
F  =  0:0.05:0.95;%频率点对的向量
A  =  [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%与F的参数对应
b  =  firls(2,F,A);%20为阶次
Signal_Filter1 = filter(b,1,NoiseSignal1);
Signal_Filter2 = filter(b,1,NoiseSignal2);
figure(1);
subplot(3,2,1);               
plot(Signal1);
title('原始信号1');
subplot(3,2,3);               
plot(NoiseSignal1);
title('高斯混合信号1');
subplot(3,2,5);  
plot(Signal_Filter1);
title('FIR滤波后高斯混合信号1');
subplot(3,2,2);               
plot(Signal1);
title('原始信号1');
subplot(3,2,4);               
plot(NoiseSignal2);
title('白噪声混合信号1');
subplot(3,2,6);  
plot(Signal_Filter2);
title('FIR滤波后白噪声混合信号1');

视图效果 

 2)方波混合噪声信号线性相位FIR滤波

代码

N = 2000; %采样点数
Fs = 2000; %采样频率
t = 0:1 / Fs:1 - 1 / Fs; %时间序列
NoiseGauss= [randn(1,2000)]; %高斯分部白噪声
NoiseWhite= [rand(1,2000)]; %后100点均匀分布白噪声
Signal2=[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1*ones(1,100),zeros(1,50),];
NSignal1= Signal2+NoiseGauss; %设计混合信号1
NSignal2= Signal2+NoiseWhite; %设计混合信号2
F  =  0:0.05:0.95;%频率点对的向量
A  =  [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];%与F的参数对应
b  =  firls(2,F,A);%20为阶次
Signal_Filter3 = filter(b,1,NSignal1);
Signal_Filter4 = filter(b,1,NSignal2);
figure(2);
subplot(3,2,1);               
plot(Signal2);
title('原始信号2');
subplot(3,2,3);               
plot(NSignal1);
title('高斯混合信号2');
subplot(3,2,5);  
plot(Signal_Filter3);
title('FIR滤波后高斯混合信号2');
subplot(3,2,2);               
plot(Signal2);
title('原始信号2');
subplot(3,2,4);               
plot(NSignal2);
title('白噪声混合信号2');
subplot(3,2,6);  
plot(Signal_Filter4);
title('FIR滤波后白噪声混合信号2');

视图效果

http://www.yayakq.cn/news/6327/

相关文章:

  • 软件公司都是干什么的做网站优化给业务员提成
  • 漂亮的网站单页跨境电商开店要多少钱
  • 佛山专业网站建设哪家好正规企业网站开发使用方法
  • 苏州比较大的网站公司网站深圳优化建设
  • div布局在线音乐网站设计西昌市建设工程管理局网站
  • 取名网站怎么做织梦网站上传步骤
  • 汨罗哪里有网站开发的公司电话华大基因背景调查
  • 微信菜单栏那些网站怎么做做电力的系统集成公司网站
  • 百度网站建设电话技术网站的费用怎么做会计分录
  • 襄阳做网站公司电话wordpress 密码
  • 公司主页网站开发综合权重查询
  • 做一个网站的基本步骤用什么软件可以做网站动态
  • 内设网站网站后端都需要什么意思
  • 东莞化妆品网站建设河间建设网站
  • 做期货看资讯什么网站好济南seo优化公司
  • 中国建设银行网站主页网站排名不可有利就前
  • 网站建设必须要在阿里云备案吗做搜狗网站优化点
  • 网站 文件 上传小型网站怎样优化
  • 保定免费建站服务山东振国网站建设
  • 低价网站备案一建二建报考条件及专业要求
  • 北京大学网站开发的需求分析看房地产的app在哪看
  • 网站在线做照片广告策划案ppt优秀案例
  • 做网站是否用数据库wordpress站点如何适应手机
  • 网站做的app有哪些漳州网站建设到博大赞
  • 房城乡建设部门户网站网站平台建设流程
  • 做网站开发的步骤广州专业网站建设哪里有
  • 建立企业网站的形式有河南省建设厅网站门户
  • 宁波 做网站的网站制作深圳
  • 注册一个logo需要多少钱威海优化联系电话
  • 网站排名稳定后后期如何优化wordpress 通过电子邮件发布