当前位置: 首页 > news >正文

网站模板 古典河南整站百度快照优化

网站模板 古典,河南整站百度快照优化,国家建设厅网站,个人 邮箱 含网站 域名1. 引言 再次问好,图像处理爱好者们!🌟 在前面的章节中,我们学习了图像处理的基础知识,并展现了图像增强的魅力。在这一节中,我们将更深入地研究空间滤波技术。 闲话少说,我们直接开始吧&#…

1. 引言

再次问好,图像处理爱好者们!🌟 在前面的章节中,我们学习了图像处理的基础知识,并展现了图像增强的魅力。在这一节中,我们将更深入地研究空间滤波技术。
闲话少说,我们直接开始吧!

2. 基本概念

在图像处理方面,空间滤波器是我们所需要的基本工具。💫 这些滤波器具有根据局部相邻像素值修改其像素值的能力,使我们能够执行各种图像处理任务,例如降噪、边缘检测和图像平滑。

首先,按照惯例,让我们导入必要的库作为基础:

import numpy as np
import matplotlib.pyplot as plt
from fractions import Fraction
from skimage.io import imread, imshow# For Spatial Filters
from scipy.signal import convolve2d
from skimage.color import rgb2gray, gray2rgb

3. 空间过滤器模板

接下来,我们将对图像应用各种简单的空间过滤器。这些过滤器的模板通常会用周围像素的平均值来改变当前像素值,从而达到图像增强和其他令人兴奋的功能。

接着,通过以下代码定义我们的过滤器模板:

def get_filters():# Define Filters# Horizontal Sobel Filterkernel_hsf = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])# Vertical Sobel Filterkernel_vsf = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]])# Edge Detectionkernel_edge = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])# Sharpenkernel_sharpen = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]])# Box Blurkernel_bblur = (1 / 9.0) * np.array([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])# Define the kernelskernels = {'Box Blur': kernel_bblur,'Sharpen': kernel_sharpen,'Horizontal Sobel Filter': kernel_hsf,'Vertical Sobel Filter': kernel_vsf,'Edge Detection': kernel_edge,}return kernels

接着,让我们展示上述模板的可视化效果:

def display_filters(image_path):# Read the imageimage = imread(image_path)[:,:,:3]    kernels = get_filters()# Create a figure with subplots for each kernelfig, ax = plt.subplots(2, 3, figsize=(20, 15))ax[0, 0].imshow(rgb2gray(image[:,:,:3]), cmap='gray')ax[0, 0].set_title('Original Image', fontsize=20)ax[0, 0].set_xticks([])ax[0, 0].set_yticks([])# Loop over the keys and values in the kernels dictionaryfor i, (name, kernel) in enumerate(kernels.items(), 1):# Determine the subplot indexrow = i // 3col = i % 3# Plot the kernel on the appropriate subplotax[row, col].imshow(kernel, cmap='gray')ax[row, col].set_title(name, fontsize=30)# Loop over the cells in the kernelfor (j, k), val in np.ndenumerate(kernel):if val < 1:ax[row, col].text(k, j, str(Fraction(val).limit_denominator()), ha='center', va='center', color='red',fontsize=30)else:ax[row, col].text(k, j, str(val), ha='center', va='center', color='red',fontsize=30)# Show the plotplt.tight_layout()plt.show()# Display filters
display_filters('dorm_lobby.png')    

得到结果如下:
在这里插入图片描述

4. 展示效果

上述代码中,通过函数get_filters(),我们定义了五种常见的空间滤波器模板,分别为Horizontal Sobel Filter, Vertical Sobel Filter, Edge Detection, Sharpen以及 Box Blur 。紧着我们可以将这些滤波器应用于真实图像。此时我们可以使用 apply_selected_kernels() 函数来达到不同的可视化效果: 🖼️✨

def apply_selected_kernels(image_path, selected_kernels, plot_cols=3):# Define the kernelsall_kernels = get_filters()# Check if the selected kernels are defined, if not raise an exceptionfor k in selected_kernels:if k not in all_kernels:raise ValueError(f"Kernel '{k}' not defined.")# Read the imageimage = imread(image_path)[:,:,:3]# Apply selected kernels to each color channel of the image conv_rgb_images = {}for kernel_name in selected_kernels:kernel = all_kernels[kernel_name]transformed_channels = []for i in range(3):conv_image = convolve2d(image[:, :, i], kernel, 'valid')transformed_channels.append(abs(conv_image))conv_rgb_image = np.dstack(transformed_channels)conv_rgb_image = np.clip(conv_rgb_image, 0, 255).astype(np.uint8)conv_rgb_images[kernel_name] = conv_rgb_image# Display the original image along with the combined results of all # the kernels in a subplotfig, ax = plt.subplots(2, plot_cols, figsize=(20, 20))ax[0, 0].imshow(image)ax[0, 0].set_title('Original Image', fontsize=20)ax[0, 0].set_xticks([])ax[0, 0].set_yticks([])for i, (kernel_name, conv_rgb_image) in enumerate(conv_rgb_images.items(), 1):row, col = divmod(i, plot_cols)ax[row, col].imshow(conv_rgb_image)ax[row, col].set_title(kernel_name, fontsize=20)ax[row, col].set_xticks([])ax[row, col].set_yticks([])plt.tight_layout()plt.show()

可以通过传入不同的参数selected_kernels,得到不同的效果,样例调用代码如下:

# Visualize Edge Detection and Sobel Filters
apply_selected_kernels('dorm_lobby.png', ['Edge Detection','Horizontal Sobel Filter', 'Vertical Sobel Filter'], plot_cols=2)

得到结果如下:
在这里插入图片描述
当然,我们可以通过以下代码查看其他几种模板的对应效果,代码如下:

# Visualize Edge Detection, Sharpen, and Box Blur
apply_selected_kernels('dog.png', ['Edge Detection','Sharpen', 'Box Blur'], plot_cols=2)

结果如下:
在这里插入图片描述

5. 分析

接着,让我们更加深入的分析上述五种模板的特点和作用,归纳如下:

  • Edge Detection (kernel_edge)
    这是一种通用的边缘检测滤波器,有时称为拉普拉斯滤波器或高斯拉普拉斯滤波器。该术语通常是指一系列用于识别数字图像中图像亮度急剧变化或不连续的点的方法。它对所有方向的边缘做出同等响应。它与 Sobel 滤镜之间的区别在于它不区分边缘方向。

  • Sobel filter
    Sobel 滤波器通常也用于边缘检测,但它专门用于检测特定方向的边缘。Sobel 算子使用两个 3x3的卷积核通过计算导数的近似值来检测不同方向的边缘——一个用于水平方向的边缘检测,另一个用于垂直方向的边缘检测。

  • Horizontal Sobel Filter (kernel_hsf)
    这旨在最大程度地响应垂直方向边缘的检测,最小地响应水平方向的边缘。这就是为什么生成的图像突出显示了水平边缘线。

  • Vertical Sobel Filter (kernel_vsf)
    这是Sobel 滤波器响应的另一个方向。它旨在最大程度地响应水平方向的边缘,最小地响应垂直方向的边缘。这就是为什么生成的图像突出显示了垂直边缘线。

  • Sharpen (kernel_sharpen)
    此滤波器用于增强图像的“清晰度”。它通过增强彼此相邻的像素的对比度来工作,从而使边缘看起来更加清晰。

  • Box Blur (kernel_bblur)
    此滤波器用于图像模糊。它的工作原理是平均每个像素周围邻域的像素值,从而降低边缘的清晰度并混合附近像素的颜色。

6. 总结

瞧!这些滤波器为我们提供了图像转换的巨大魅力,可以突出隐藏的细节并增强其视觉冲击力。通过了解每种滤波器的特性和应用,可以释放我们的创造力,探索图像处理的无限可能性。

这不是很酷吗?😎

http://www.yayakq.cn/news/246817/

相关文章:

  • 10m光纤做网站足球比赛直播英超
  • 电子商务网站解决方案南京博学建设集团网站
  • 网站开发流程窝窝在线观看
  • 宿州网站建设开发公司哪家好雅思培训班价格一览表
  • 我想建网站daozicms企业建站系统
  • 图片设计网站有哪些公司 宜宾网站建设
  • 自己做外贸 建一个网站百度云建站
  • 怎样选择 网站建设python可以用来干什么
  • 用flash做网站软件商店下载app
  • 长春网站建设平台专业网站建设公司兴田德润在哪里
  • 广州那家做网站最好科技设计网站建设
  • 怎么申请建立个人免费网站网络教育网站建设
  • 网站建设销售顾问开场白合肥金融网站设计
  • 广州个性化网站开发wordpress4.7.2卡
  • 服务器网站80端口打不开网络公司经营范围有哪些类型
  • 免费网站流量统计工具怎么在网站后台挂马
  • 惠州企业建站系统批量关键词排名查询工具
  • 汝阳网站开发怎么做装饰公司网站宣传
  • 寻求网站建设技术清新县城乡规划建设局网站
  • 辽宁省网站制作网址有哪些组成
  • 承德做网站公司最近中文字幕mv在线视频
  • 在线创建网站免费网站网站关键词搜索
  • 如何制作产品网站仪征网站建设
  • 营销型网站建设的流程wordpress模板视频
  • 哪里可以做产品购物网站江西住房与城乡建设厅网站
  • 关于网站集约化建设公函上海公司新能源过户个人
  • 泰安做网站网络公司模板式自助建站
  • 百度网站安全检测多用户商城 开源
  • 网站开发技术语言vue 做企业网站
  • 做名片赞机器人电脑网站是多少做网站多少钱一张页面