当前位置: 首页 > news >正文

开公司网站创建费用什么公司时候做网站

开公司网站创建费用,什么公司时候做网站,三合一网站方案,接帮人家做网站的网站TensorFlow 实现神经网络模型来进行摄氏度到华氏度的转换,可以将其作为一个回归问题来处理。我们可以通过神经网络来拟合这个简单的转换公式。 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 …

TensorFlow 实现神经网络模型来进行摄氏度到华氏度的转换,可以将其作为一个回归问题来处理。我们可以通过神经网络来拟合这个简单的转换公式。

1. 数据准备与预处理

2. 构建模型

3. 编译模型

4. 训练模型

5. 评估模型

6. 模型应用与预测

7. 保存与加载模型

8. 完整代码


1. 数据准备与预处理

你提供了摄氏度和华氏度的数据,并进行了标准化。标准化是为了使数据适应神经网络的训练,因为标准化可以加快训练过程并提高模型性能。

import numpy as np
import tensorflow as tf# 温度数据:摄氏度到华氏度的转换
celsius = np.array([-50,-40, -10, 0, 8, 22, 35, 45, 55, 65, 75, 95], dtype=float)
fahrenheit = np.array([-58.0,-40.0,14.0,32.0,46.4,71.6,95.0,113.0,131.0,149.0,167.0,203.0], dtype=float)# 数据标准化:计算均值和标准差
celsius_mean = np.mean(celsius)
celsius_std = np.std(celsius)fahrenheit_mean = np.mean(fahrenheit)
fahrenheit_std = np.std(fahrenheit)# 标准化输入和输出数据
celsius_normalized = (celsius - celsius_mean) / celsius_std
fahrenheit_normalized = (fahrenheit - fahrenheit_mean) / fahrenheit_std

2. 构建模型

在构建模型时,使用了一个简单的神经网络结构。神经网络包含了一个隐藏层和一个输出层。隐藏层使用了ReLU激活函数,输出层使用了线性激活函数,适合回归任务。

# 创建模型
model = tf.keras.Sequential([# 隐藏层,增加神经元数量,激活函数使用 ReLUtf.keras.layers.Dense(16, input_dim=1, activation='relu'),# 输出层,线性激活函数用于回归任务tf.keras.layers.Dense(1, activation='linear')
])

3. 编译模型

选择了Adam优化器,它在处理回归任务时表现较好,损失函数使用均方误差(MSE),这是回归问题中常用的损失函数。

# 编译模型,使用 Adam 优化器和均方误差损失函数
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mean_squared_error')

4. 训练模型

模型通过 fit() 方法进行训练,设置训练轮数(epochs)为5000轮。根据数据的复杂性和模型的表现,增加训练轮数可以帮助模型更好地收敛。

# 训练模型,设置训练轮数(epochs)增加到5000
model.fit(celsius_normalized, fahrenheit_normalized, epochs=5000)

5. 评估模型

训练完成后,你可以对模型进行评估。这里使用了一个测试集(test_celsius),并通过预测得到标准化的结果,然后将其恢复为原始的华氏度值。

# 测试模型
test_celsius = np.array([0, 20, 100], dtype=float)
test_celsius_normalized = (test_celsius - celsius_mean) / celsius_std
predictions_normalized = model.predict(test_celsius_normalized)# 将预测结果从标准化值恢复到原始华氏度范围
predictions = predictions_normalized * fahrenheit_std + fahrenheit_mean

6. 模型应用与预测

最后,你可以输出预测的华氏度值。模型会对每个输入的摄氏度值返回预测的华氏度

# 输出预测结果
print("预测华氏度:")
for c, f in zip(test_celsius, predictions):print(f"{c} 摄氏度 => {f[0]} 华氏度")

7. 保存与加载模型

保存模型可以让你在之后加载并进行预测而不需要重新训练。在TensorFlow中,你可以使用 model.save() 来保存模型,使用 tf.keras.models.load_model() 来加载模型。

# 保存模型
model.save('temperature_conversion_model.h5')# 加载模型
loaded_model = tf.keras.models.load_model('temperature_conversion_model.h5')

8. 完整代码

最终的完整代码如下:

import numpy as np
import tensorflow as tf# 温度数据:摄氏度到华氏度的转换
celsius = np.array([-50,-40, -10, 0, 8, 22, 35, 45, 55, 65, 75, 95], dtype=float)
fahrenheit = np.array([-58.0,-40.0,14.0,32.0,46.4,71.6,95.0,113.0,131.0,149.0,167.0,203.0], dtype=float)# 数据标准化:计算均值和标准差
celsius_mean = np.mean(celsius)
celsius_std = np.std(celsius)fahrenheit_mean = np.mean(fahrenheit)
fahrenheit_std = np.std(fahrenheit)# 标准化输入和输出数据
celsius_normalized = (celsius - celsius_mean) / celsius_std
fahrenheit_normalized = (fahrenheit - fahrenheit_mean) / fahrenheit_std# 创建模型
model = tf.keras.Sequential([# 隐藏层,增加神经元数量,激活函数使用 ReLUtf.keras.layers.Dense(16, input_dim=1, activation='relu'),# 输出层,线性激活函数用于回归任务tf.keras.layers.Dense(1, activation='linear')
])# 编译模型,使用 Adam 优化器和均方误差损失函数
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mean_squared_error')# 训练模型,设置训练轮数(epochs)增加到5000
model.fit(celsius_normalized, fahrenheit_normalized, epochs=5000)# 测试模型
test_celsius = np.array([0, 20, 100], dtype=float)
test_celsius_normalized = (test_celsius - celsius_mean) / celsius_std
predictions_normalized = model.predict(test_celsius_normalized)# 将预测结果从标准化值恢复到原始华氏度范围
predictions = predictions_normalized * fahrenheit_std + fahrenheit_mean# 输出预测结果
print("预测华氏度:")
for c, f in zip(test_celsius, predictions):print(f"{c} 摄氏度 => {f[0]} 华氏度")# 保存模型
model.save('temperature_conversion_model.h5')# 加载模型
loaded_model = tf.keras.models.load_model('temperature_conversion_model.h5')

http://www.yayakq.cn/news/977825/

相关文章:

  • 成都网站建设网站建设哪家好上海工商一网通办
  • 东莞市建设质量监督网站如何建设运输网站
  • 网站开发费用科目asp能不能作为网页开发语言
  • 计算机软件开发规范1988作废微信seo是什么意思
  • 华龙建设部网站查不到做网站需要哪些流程
  • 兰州企业网站制作seo百度快速排名软件
  • 公司网站建设制作建站公司专业团队
  • 国外网站 备案课程网站开发运行环境
  • 红杭州网站建设营业执照最佳取名
  • jsp 网站连接数据库广安市网站建设
  • 伍佰亿网站推广公司介绍信
  • 品牌网站建设wordpress支付宝扫码
  • 长春电商网站建设哪家专业武进网站建设代理商
  • 住房和城乡建设部网站公布信息电商设计培训机构
  • 如何搭建静态网站源码professional wordpress pdf
  • 章贡区综合网站建设商家有哪些做设计交易网站
  • 电商网站建设推荐株洲人才网
  • 网站开发环境搭建章节教材书自适应网站运动div如何设置的
  • 济南网站建设全包wordpress展开 折叠功能
  • 织梦网站换空间电商网站的建设与安全
  • 朝阳专业网站建设网站建设策划书(建设前的市场分析)
  • 做网站百度收费吗快速做网站的软件
  • 南京做网站是什么北京小程序定制开发
  • 中企动力做的 石子厂网站演艺公司
  • 建设银行官方网站登录葫芦岛市城乡建设局网站
  • 企业网站管理系统源码网页游戏大全力荐新壹玩
  • 常州网站建设市场企业展厅效果图
  • 网站建设基本费用黄冈公司做网站
  • 备案号网站下边企业网站用wordpress
  • 企业管理系统网站网站建设要考虑哪些方面