当前位置: 首页 > news >正文

网站数据库太大搬家还原500错误福清市建设局监督站网站

网站数据库太大搬家还原500错误,福清市建设局监督站网站,教育网站制作一般多少钱,中文编程软件目录 基础知识PAC学习有限假设空间可分情形不可分情形 VC维稳定性 基础知识 计算学习理论研究的是关于通过"计算"来进行"学习"的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证…

目录

  • 基础知识
  • PAC学习
  • 有限假设空间
    • 可分情形
    • 不可分情形
  • VC维
  • 稳定性

基础知识

计算学习理论研究的是关于通过"计算"来进行"学习"的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。
给定样例集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x m , y m ) } D=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} D={(x1,y1),(x2,y2),,(xm,ym)}, x i ϵ χ x_{i}\epsilon \chi xiϵχ,假设 χ \chi χ中的所有样本服从一个隐含未知的分布 D \mathcal{D} D, D 中所有样本都是独立地从这个分布上采样而得.

PAC学习

计算学习理论中最基本的是概率近似正确 (Probably Approximately Correct,简称 PAC)学习理论 。下面介绍几个定义

定义1:PAC辨识:对 0 < ϵ 0<\epsilon 0<ϵ, δ < 1 \delta <1 δ<1,所有 c ϵ C c\epsilon \mathcal{C} C和分布 D \mathcal{D} D,若存在学习算法 ς \varsigma ς,其输出假设 h ϵ H h\epsilon \mathcal{H} hϵH满足 P ( E ( h ) ≤ ϵ ) ≥ 1 − δ P(E(h)\le \epsilon )\ge 1-\delta P(E(h)ϵ)1δ,则称学习算法 ς \varsigma ς能从假设空间中PAC辨识概念类 C \mathrm {} C C
定义2:PAC可学习:令m表示从分布D中独立同分布采样得到的样例数目, 0 < ϵ 0<\epsilon 0<ϵ, δ < 1 \delta <1 δ<1,对所有分布T,若存在学习算法 L \mathcal{L} L和多项式函数poly(…),使得对任何 m ≥ p o l y ( 1 / ϵ , 1 / δ , s i z e ( x ) , s i z e ( c ) ) m\ge poly\left ( 1/\epsilon ,1/\delta ,size\left ( x \right ),size\left ( c \right ) \right ) mpoly(1/ϵ,1/δ,size(x),size(c)), L \mathcal{L} L能从假设空间 H \mathcal{H} H中PAC辨识概念类 C \mathcal{C} C,则称概念类 C \mathcal{C} C对假设空间而言是PAC可学习的。

PAC 学习中一个关键因素是假设空间 H \mathcal{H} H的复杂度。 H \mathcal{H} H包含了学习算法 ε \varepsilon ε所有可能输出的假设,若在PAC学习中假设空间与概念类完全相同,即 H \mathcal{H} H= C \mathcal{C} C,这称为"恰PAC可学习",这意味着学习算法的能力与学习任务"恰好匹配"。

有限假设空间

有限假设空间是指假设空间中的假设数目是有限的。在这种情况下,可以更容易地分析学习算法的表现。对于有限假设空间,根据是否能找到一个假设完全匹配训练数据,可以分为可分情形和不可分情形。

可分情形

在机器学习中,“可分情形”指的是存在一个假设(即学习算法中的模型)可以在训练数据集上达到零误差,即这个假设能够完全正确地标记所有训练样本。当这种情况发生时,我们说训练数据集对于这个假设空间是“可分的”。

在可分情形下,学习算法的目标是找到这个假设,也就是找到一个决策边界或分类规则,使得所有训练样本都能够被正确分类。例如,在二分类问题中,如果存在一条超平面(在高维空间中也称为超平面)能够完美地将两类数据分开,那么这个问题就是线性可分的。
判断数据集是否线性可分可以通过以下几种方法:
可视化: 如果数据集维度较低(如二维或三维),可以通过绘制数据集的散点图来直观地判断是否线性可分6。
SVM: 使用支持向量机(Support Vector Machine, SVM),如果SVM能够在训练数据集中找到一个超平面,使得所有正类和负类的点都能够被正确分类,那么这个数据集就是线性可分的。

在可分情形下,学习算法的目标非常明确,就是要找到一个能够在训练集上达到零误差的假设。这种情况下,学习算法通常会表现得非常好,因为它不需要处理噪声或异常值所带来的影响。然而,值得注意的是,在实际应用中,数据往往含有噪声或不一致之处,因此很少能够遇到真正的可分情形,更多的是处理不可分情形,这时就需要引入如正则化等技术来改善模型的泛化能力。

不可分情形

在某些情况下,学习算法可能无法准确地学习到目标概念,尤其是在概念本身不在假设空间内的时候。然而,即便在这种情况下,学习算法也可以尝试找到一个接近最优解的假设。这就是所谓的不可知学习(Agnostic Learning)。不可知PAC学习允许算法在假设空间中寻找一个假设,即使这个假设不是最优的,但却是对于当前假设空间而言最好的。定义中指出,如果对于所有的分布,存在一个学习算法能够在多项式时间内找到一个近似的假设,使得经验误差和泛化误差之差不超过一个给定的界限,则假设空间是不可知PAC可学习的。

VC维

定义:VC维是统计学习理论中的一个重要概念,。对于一个二分类问题,如果存在h个样本能够被假设空间中的函数按照所有可能的 2 h 2^{h} 2h种形式分开(即打散),则称假设空间能够把h个样本打散。假设空间的VC维就是它能打散的最大样本数目h。如果对于任意数目的样本都有函数能将它们打散,则假设空间的VC维是无穷大。

意义:VC维反映了函数集的学习能力,VC维越大则学习机器越复杂(容量越大)。所谓的结构风险最小化就是在保证分类精度(经验风险)的同时,降低学习机器的VC维,可以使学习机器在整个样本集上的期望风险得到控制。

稳定性

稳定性是衡量学习算法对输入数据微小变化的敏感程度。稳定的算法在输入数据发生微小变化时,输出结果的变化也很小。稳定性与可学习性之间存在着密切的关系,因为一个稳定的算法往往有更好的泛化能力。通过分析算法的稳定性,可以推断算法的可学习性。

http://www.yayakq.cn/news/417619/

相关文章:

  • 深圳团购网站建设网站绑定多个域名
  • 自学做网站可以赚钱吗seo网站结构优化
  • 喜满堂网站建设国内seo公司哪家最好
  • 灰色推广网站建设与网站优化
  • 手机网站源程序用html5做的网站
  • 古镇建设网站后台网站更新 网站没显示
  • 网站制作一般哪家好wordpress微信没缩略图
  • 网站优化策略wordpress视屏类型不受支持
  • 学校网站建设栏目设置广告策划公司简介
  • 淄博建设公司网站河南安阳区号
  • 震旦网站谁做的小白如何制作微信小程序
  • 网站开发费税率是多少钱抖音开放平台申请
  • 思而忧网站it运维系统详细设计
  • 台州网站排名优化wordpress留言板自定义
  • 企业网站推广方案范文苍山做网站
  • 晨旭东方网站建设某网站seo策划方案
  • 网站建设时间规划网站导航条设计
  • 汶上手机网站建设制作社交网站
  • 温州网站建设报价网站标题优化排名
  • 普通网站建设是什么网站备案需要拍照
  • 设计上海网站个人网页的内容
  • 南召微网站建设文化设计有限公司
  • 佛山快速建站哪家服务专业湖南省郴州市安仁县
  • 网站建设仟首先金手指14网页编辑与网站编辑
  • 桂林北站防疫电话深圳工业设计有限公司
  • 有哪些网站用vue做的网站设计中级
  • 临猗商城网站建设平台珠海做网站及推广
  • 西安建设局网站首页知名的seo快速排名多少钱
  • 酒店为什么做网站怎么把在EXCEL做的查询系统做到网站上
  • 黄冈网站建设报价表网课系统软件网站建设费用