当前位置: 首页 > news >正文

长沙网站建设网国家企业查询系统

长沙网站建设网,国家企业查询系统,阿里云网站建站,杭州旅游景区网站建设👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——线性回归的简洁实现 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所…

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——线性回归的简洁实现
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

softmax回归

  • 分类问题
  • 网络架构
  • 全连接层的参数开销
  • softmax运算
  • 小批量样本的矢量化

回归可以用来预测多少的问题,比如房屋被售出价格。而除了预测,我们也对分类问题感兴趣,不是问“多少”,而是问“哪一个”。如:“某个邮件是否是垃圾邮件?图像描绘的是什么动物?某人接下来最可能看哪部电影?”

分类问题

以图像分类为例,每次输入一个2×2的灰度图像,可以用一个标量表示每个像素值,每个图像对应四个特征x1、x2、x3、x4。假设每个图像属于类别“猫”“鸡”和“狗”中的一个。
接下来要选择如何表示标签,最直接的想法是选择y∈{1,2,3}分别代表{狗,猫,鸡}。
如果类别间有一些自然顺序,比如我们要试图预测{婴儿,儿童,青少年,青年人,中年人,老年人},那么该问题就会转变为回归问题。但一般的分类问题和类别之间的自然顺序是无关的。
独热编码
独热编码是一个向量,它的分量与类别是一样多的。类别对应的分量设置为1,其它所有分量设置为0,如:
y∈{(1,0,0),(0,1,0),(0,0,1)}分别代表三类动物。

网络架构

要解决线性模型的分类问题,需要设置和输出一样多的仿射函数,在上面的问题中,我们有4个特征和3个可能的输出类别,所以我们需要用12个标量来表示权重,3个标量来表示偏置(带下标的b):
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 o 2 = x 2 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 o 1 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 o_1=x_1w_{11}+x_2w_{12}+x_3w_{13}+x_4w_{14}+b_1\\ o_2=x_2w_{21}+x_2w_{22}+x_3w_{23}+x_4w_{24}+b_2\\ o_1=x_1w_{31}+x_2w_{32}+x_3w_{33}+x_4w_{34}+b_3 o1=x1w11+x2w12+x3w13+x4w14+b1o2=x2w21+x2w22+x3w23+x4w24+b2o1=x1w31+x2w32+x3w33+x4w34+b3
其中o表示未规范化的预测。
我们可以用神经网络图来描述这个计算过程,显然softmax回归也是个单层神经网络。由于输出取决于所有的输入,所以softmax回归的输出层也是全连接层
在这里插入图片描述
可以用o=Wx+b来表示模型。

全连接层的参数开销

全连接层无处不在,对于任何具有d个输入和q个输出的全连接层,参数开销为:
O ( d q ) O(dq) O(dq)
这个数字还是太大了,但将d个输入转换为q个输出的成本可以减少到:
O ( d q n ) O(\frac{dq}{n}) O(ndq)
超参数n可以由我们灵活指定。

softmax运算

现在我们将优化参数以最大化观测数据的概率。为了得到预测结果,我们设置一个阈值,如选择具有最大概率的标签。
我们希望模型输出三个类的概率,然后选用最大输出值来作为我们的预测。
我们不能将未规范化的预测o直接视作我们感兴趣的输出。因为将线性层的输出直接视为概率时会存在一些问题:
1、我们没有限制这些输出数字的总和为1。
2、根据输入的不同,它们可以为负值,违背了概率基本公理。
要将输出视为概率,必须保证在任何数据上的输出都是非负的且总和为1。此外,需要训练一个目标函数,来激励模型精准的估计概率。例如,在分类器输出0.5的所有样本中,我们希望这些样本是刚好有一半实际上属于预测的类别。这个属性叫做校准
而softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。为了确保最终输出的概率值总和为1,我们让每个求幂后的结果除以它们的总和:
y ^ = s o f t m a x ( o ) ,其中 y ^ j = e x p ( o j ) ∑ k e x p ( o k ) \hat{y}=softmax(o),其中\hat{y}_j=\frac{exp(o_j)}{\sum_kexp(o_k)} y^=softmax(o),其中y^j=kexp(ok)exp(oj)
这里,对于所有的j,总有:
0 ≤ y ^ j ≤ 1 0≤\hat{y}_j≤1 0y^j1
因此,y hat可以视为一个正确的概率分布。
softmax运算不会改变未规范化的预测o之间的大小次序,只会确定分配给每个类别的概率。因此,在预测过程中,我们可以用下式来选择最有可能的类别:
a r g m a x j y ^ j = a r g m a x j o j argmax_j\hat{y}_j=argmax_jo_j argmaxjy^j=argmaxjoj
尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。因此,softmax回归是一个线性模型。

小批量样本的矢量化

为了提高计算效率并且充分利用GPU,我们通常会对小批量样本的数据执行矢量计算。假设我们读取了一个批量的样本X,其中特征维度(输入数量)为d,批量大小为n。此外,假设我们在输出中有q个类别。那么:
小批量样本的特征为 X ∈ R n × d 权重为 W ∈ R d × q 偏置为 b ∈ R 1 × q 小批量样本的特征为X∈R^{n×d}\\ 权重为W∈R^{d×q}\\ 偏置为b∈R^{1×q} 小批量样本的特征为XRn×d权重为WRd×q偏置为bR1×q
softmax回归的矢量计算表达式为:
O = X W + b Y ^ = s o f t m a x ( O ) O=XW+b\\ \hat{Y}=softmax(O) O=XW+bY^=softmax(O)
小批量样本的矢量化加快了X和W的矩阵-向量乘法。
由于X中的每一行代表一个数据样本,那么softmax运算可以按行执行:对于O的每一行,我们先对所有项进行幂运算,然后通过求和来对他们进行标准化。(XW+b的求和会使用广播机制,小批量的未规范化预测和输出概率都是n×q的矩阵)。

http://www.yayakq.cn/news/417848/

相关文章:

  • 怎么能自己创建网站做免费互动小游戏的网站
  • 中国移动官方网站登录入口软件开发工具
  • 昆明百度推广开户费用页面seo是什么意思
  • jsp做的当当网站的文档做区位分析底图的网站
  • 合肥知名网站建设公司发布悬赏任务的推广平台
  • 网站整合推广怎么做网站建设作业
  • 成品1688网站目前网站开发怎么兼顾手机
  • 网站数据库怎么做同步吗wordpress接入公众号
  • 百度网站推广电话我想卖自己做的鞋子 上哪个网站好
  • 上海网站建筑公司重庆小程序开发
  • 网站地图htmlwordpress阿里云短信
  • 宣传部总结网站建设软件开发公司排名国内
  • 网站建设全攻略免费代理ip
  • 公司网站建设计入什么明细科目产品外观设计用什么软件
  • 做网站新闻医疗器械备案
  • 公司网站的设计与实现郑州低价网站制作
  • 枣庄做网站制作建网站石家庄
  • qianhu微建站成全视频免费观看在线看第7季电视剧
  • 好的提升设计师网站用dw做的网站怎么发布
  • 深圳市门户网站建设企业h5页面制作软件教程
  • 做网站选用什么域名比较好网站建设表单教案
  • 安徽鸿顺鑫城建设集团网站公网ip做网站访问不
  • 爱奇艺的网站是用什么做的哪里可以做期货网站平台
  • 网站的360度全景图片怎么做公司名称变更说明函
  • 酒店预订网站开发做外贸网站注意
  • 如何很好的进行网站的内部推广广州各类外贸网站
  • 徐州专业网站建设高端网站建设的流程是什么
  • 青岛新公司网站建设推广拼多多商品关键词搜索排名
  • 网站建设及数据分析织梦做的网站打不开网页
  • 盐城市建设银行网站做网站的域名和空间是什么意思