当前位置: 首页 > news >正文

南通建设局网站外贸网站建设 杭州

南通建设局网站,外贸网站建设 杭州,企业文化心得体会,自己怎么做网页推广深度学习-第T2周——彩色图片分类深度学习-第P1周——实现mnist手写数字识别一、前言二、我的环境三、前期工作1、导入依赖项并设置GPU2、导入数据集3、归一化4、可视化图片四、构建简单的CNN网络五、编译并训练模型1、设置超参数2、编写训练函数六、预测七、模型评估深度学习-…

深度学习-第T2周——彩色图片分类

  • 深度学习-第P1周——实现mnist手写数字识别
    • 一、前言
    • 二、我的环境
    • 三、前期工作
      • 1、导入依赖项并设置GPU
      • 2、导入数据集
      • 3、归一化
      • 4、可视化图片
    • 四、构建简单的CNN网络
    • 五、编译并训练模型
      • 1、设置超参数
      • 2、编写训练函数
    • 六、预测
    • 七、模型评估

深度学习-第P1周——实现mnist手写数字识别

一、前言

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.5
  • 编译器:colab在线编译
  • 深度学习环境:Tensorflow

三、前期工作

1、导入依赖项并设置GPU

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]tf.config.experimental.set_memory_growth(gpu0, True)tf.config.set_visible_device([gpu0], "GPU")

2、导入数据集

使用dataset下载MNIST数据集,并划分训练集和测试集

使用dataloader加载数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

3、归一化

数据归一化作用

  • 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确
  • 加快学习算法的准确性
train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

4、可视化图片

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize = (20, 10))
for i in range(20):
plt.subplot(5, 10, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap = plt.cm.binary)
plt.xlabel(class_names[train_labels[i][0]])plt.show()

在这里插入图片描述

四、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • 卷积层:通过卷积操作对输入图像进行降维和特征抽取,有卷积,填充,步幅三个部分。
    • 卷积:假设输入图片为n * n,通过k * k的卷积核,那么输出维度为(n-k+1)*(n-k+1)。
    • 填充:假设输入图片为n * n,通过k * k的卷积核, 且填充为p,那么输出维度为(n-k+2p+1)*(n-k+2p+1)
    • 步幅: 假设输入图片为n * n,通过k * k的卷积核, 填充为p,且步幅为s,那么输出维度为((n-k+2p)/ s +1)*((n-k+2p)/ s +1)
  • 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
    • 与卷积层一样,假设输入图片为n * n,通过k * k的卷积核, 填充为p,且步幅为s,那么输出维度为((n-k+2p)/ s +1)*((n-k+2p)/ s +1)
#二、构建简单的CNN网络
# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征抽取,输出维度为
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model = models.Sequential([layers.Conv2D(32, (3, 3), activation = 'relu', input_shape= (32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation = 'relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation = 'relu'),layers.Flatten(),layers.Dense(64, activation = 'relu'),layers.Dense(10)
])model.summary()
#以上为简单的tf八股模板,可以看B站的北大老师曹健的tensorflow笔记

在这里插入图片描述

五、编译并训练模型

1、设置超参数

#这里设置优化器,损失函数以及metrics
model.compile(#设置优化器为Adam优化器optimizer = 'adam',#设置损失函数为交叉熵损失函数loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True),metrics = ['accuracy']
)

2、编写训练函数

history = model.fit(train_images,train_lables,epochs = 10,validation_data = (test_images, test_lables)
)

在这里插入图片描述

六、预测

plt.imshow(test_images[1])

在这里插入图片描述

import numpy as nppre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])

在这里插入图片描述

七、模型评估

import matplotlib.pyplot as pltplt.plot(history.history['accuracy'], label = 'accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1]) #设置y轴刻度
plt.legend(loc = 'lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images, test_labels, verbose = 2)
#verbose = 0不输出日志信息, = 0 输出进度条记录, = 2 输出一行记录

在这里插入图片描述

print(test_acc)

在这里插入图片描述

http://www.yayakq.cn/news/121723/

相关文章:

  • 网站建设推广方案模版国内创意网页设计
  • 自己设计一个网站首页小程序定制开发深圳
  • tomcat做静态网站网站访问很慢
  • 吴堡网站建设费用文化推广网站建设心得
  • 包装制品东莞网站建设全国文明城市创建内容
  • 在网站服务器上建立数据库广州网站建设正规公司
  • 金融网站建设tp5企业网站开发实例
  • 网站建设实录公司邮箱一般用哪种
  • wdcp上传网站软件外包行业
  • 如果搭建网站网站建设话术开场白
  • 海外网站域名wordpress封面外链
  • 搜索引擎哪个最好用排名优化公司电话
  • tomcat 网站开发抖音指数查询
  • 长春专业网站建设公司排名网销培训
  • 四川网站建设案例单招网做网站的图片大小是多少
  • 网站欣赏code编程网站
  • 公司网站推广是做什么电子商务网站建设与维护题库
  • 中小企业网站官网wordpress 分类页 获取别名
  • 手机社交网站模板网站优化公司服务
  • 建站网络h5页面制作素材
  • 安卓手机建网站2018年做视频网站
  • 枣庄做网站的公司一个公司能备案多个网站吗
  • 上海网站排名提升制作二维码网站免费
  • 城阳网站建设培训网站建设应用程序开发
  • 广东网站备案系统宝安网站制作公司
  • 网站模板做的比较好的网站建设需要些什么软件
  • 咨询学校网站开发费用优化软件刷排名seo
  • 怒江企业网站建设如何做网站的维护和推广
  • 电信100m光纤做网站广告设计app哪个好用
  • 网站的动画效果代码企业网站报价方案下载